
ar
X

iv
:2

50
2.

07
86

4v
5

 [
cs

.L
G

]
 1

2
Ju

n
20

25

TransMLA: MLA Is All You Need

Fanxu Meng1∗, Pingzhi Tang1∗, Xiaojuan Tang1, Zengwei Yao4, Xing Sun3, Muhan Zhang1,2†
1Institute for Artificial Intelligence, Peking University

2State Key Laboratory of General Artificial Intelligence, BIGAI
3Tencent Youtu Lab, Shanghai, China

4Xiaomi Corp., Beijing, China
https://github.com/fxmeng/TransMLA

Abstract

Modern large-language models often face communication bottlenecks on current
hardware rather than computational limitations. Multi-head latent attention (MLA)
addresses this by compressing the key-value cache using low-rank matrices, while
the Absorb operation prevents the KV cache from reverting to its original size,
significantly boosting both training and inference speed. Despite the success of
DeepSeek V2/V3/R1, most model providers have heavily invested in optimizing
GQA-based models and, therefore, lack strong incentives to retrain MLA-based
models from scratch. This paper demonstrates that MLA provides superior ex-
pressive power compared to GQA with the same KV cache overhead, thereby
offering a rationale for transitioning from GQA to MLA. In addition, we introduce
TransMLA, a framework that seamlessly converts any GQA-based pre-trained
model (e.g., LLaMA, Qwen, Gemma, Mistral/Mixtral) into an MLA-based model.
For the first time, our method enables direct conversion of these models into a
format compatible with DeepSeek’s codebase, allowing them to fully leverage
DeepSeek-specific optimizations such as vLLM and SGlang. By compressing
93% of the KV cache in LLaMA-2-7B, we achieve a 10.6x speedup with an 8K
context length while maintaining meaningful output. Moreover, the model requires
only 6B tokens for fine-tuning to recover comparable performance across multi-
ple benchmarks. TransMLA provides a practical path for migrating GQA-based
models to the MLA structure, and when combined with DeepSeek’s advanced
optimizations—such as FP8 quantization and Multi-Token Prediction—further
inference acceleration can be achieved.

< <

Cached During Inference

MQA

𝑇

GQA

𝑑

···

𝑔

MLA

𝑔𝑑ℎ

𝒑𝒓𝒐𝒋

𝑑 𝑔𝑑

Q

K

(a) Given the same KV cache size, the expressiveness
increases in the order of GQA, MLA, and MQA.

K

RoPE 𝑲

Krope

BKV-PCA

Knope V

𝑹𝒐𝑹𝒐𝑷𝑬 &
𝑭𝒓𝒆𝒒𝑭𝒐𝒍𝒅

V

Krope Ckv

Knope

(b) TransMLA concentrates positional information
into Krope and compresses Knope and V .

Figure 1: GQA, MLA, and MQA can be equivalently transformed in one direction, illustrating a
gradual increase in expressive power. RoRoPE aggregates positional information in the first head,
eliminating the need for RoPE in others. FreqFold further enhances this effect. Finally, after balancing
the magnitudes of Krope and V , a joint low-rank approximation is applied to compress the KV cache.

∗Equal contribution.
†Corresponding author: muhan@pku.edu.cn

Preprint. Under review.

https://github.com/fxmeng/TransMLA
https://arxiv.org/abs/2502.07864v5

1 Introduction

Advanced Large language models (LLMs)—GPT-4o OpenAI [2024], Claude 3.7 Sonnet Anthropic
[2024], Gemini-2.5 Team et al. [2024a], LLaMA-4 AI@Meta [2024], Mistral-3 Mistral [2024],
Qwen-3 Qwen [2024], DeepSeek V3/R1 Liu et al. [2024a], Guo et al. [2025], Gemma-3 Team
et al. [2024b], and Phi-4 Abdin et al. [2024]—rapidly evolving frontier for both research and
applications. LLMs rely on next-token prediction Radford [2018], Brown et al. [2020]: tokens are
generated sequentially, and self-attention is computed over all preceding tokens. To avoid redundant
computation, implementations store the intermediate key–value (KV) pairs in a cache. Yet, as model
and context sizes grow, the KV cache itself becomes a major bottleneck for inference.

To mitigate these challenges, Group-Query Attention (GQA) Ainslie et al. [2023] groups the query
heads so that every head within a group shares a single key and value head. When the number
of groups is one, GQA degenerates to Multi-Query Attention (MQA) Shazeer [2019]. When the
number of groups equals the number of heads, it reduces to the standard Multi-Head Attention (MHA)
Vaswani et al. [2017]. While both GQA and MQA cut the size of the KV cache relative to MHA,
they do so at the cost of model quality. Post-training KV-cache compression techniques—such as
Duo-Attention Xiao et al. [2024], KiVi Liu et al. [2024b], KV-Quant Hooper et al. [2024], and H2O
Zhang et al. [2023]—further shrink memory usage, but their non-standard implementations demand
specialized optimizations, hindering widespread adoption.

Multi-Head Latent Attention (MLA)—introduced with DeepSeek V2 DeepSeek-AI [2024] and
further refined in DeepSeek V3 DeepSeek-AI [2024] and DeepSeek R1 Guo et al. [2025]—offers a
pre-trained KV-cache compression strategy that strikes an excellent balance between computational
efficiency and model quality. Models equipped with MLA deliver state-of-the-art results while driving
training and inference costs to new lows. Moreover, the DeepSeek team’s ongoing commitment to
open-source releases provides highly optimized implementations and deployment recipes, making
these advances readily accessible to the community.

In this paper, we first prove that MLA consistently offers higher expressive power than GQA under the
same KV cache overhead, which theoretically explains the advantage of MLA. However, a practical
obstacle preventing model vendors from switching to MLA is the substantial prior investment on
GQA-based models. This motivates us to ask, can we seamlessly convert a GQA-based pretrained
model, such as LLaMA AI@Meta [2024] and Qwen Qwen [2024], to MLA so that we can inherit the
model weights and pretraining effort, rather than training MLA from scratch?

A key obstacle to converting a GQA-based model to MLA is that every query–key head carries its
own Rotary Positional Embedding (RoPE) [Su et al., 2024], blocking the Absorb operation [Chang
et al., 2024] that DeepSeek uses to switch between compute- and memory-efficient modes. Borrowing
from DeepSeek’s Decoupled RoPE scheme, we concentrate the positional signal in K into a small
subset of dimensions, Krope. The remaining dimensions, Knope, contain little positional content; we
drop their RoPE and merge them with V for low-rank decomposition. Once RoPE is isolated, the key
up-projection—now RoPE-free—can be absorbed into the query projection exactly as in DeepSeek,
enabling seamless MLA conversion.

To efficiently concentrate positional information into fewer dimensions, we introduce RoRoPE—a
novel technique that performs principal component analysis (PCA) on the key output, applies rotation
across the two ends of RoPE, and consolidates the principal components of all attention heads into
the dimensions of the first attention head. We theoretically prove that the product remains invariant
after rotating the query and key using a matrix U, as long as U satisfies two conditions: (1) rotation
occurs only within the same dimension across all attention heads, and (2) the real and imaginary
components of RoPE are rotated in the same manner. Additionally, by exploiting the frequency
similarity between adjacent RoPE dimensions, we propose FreqFold, a technique that improves the
concentration efficiency in the first attention head.

Finally, we found that the ℓ2-norm of Knope is far larger than that of V . If we run PCA on the
concatenated matrix

[
Knope;V

]
without adjustment, the principal components are dominated by

Knope, leading to severe information loss from the value subspace and a sharp drop in accuracy. We
therefore introduce a Balanced Key–Value (BKV) procedure: we first rescale Knope and V so that
their norms match, and only then perform joint PCA. This simple normalization restores balance
between the two subspaces and delivers a marked improvement in compression quality.

2

The above innovations collectively form our TransMLA method. Using TransMLA, we compressed
the KV cache of LLaMA-2 by 68.75%, with only a 1.65% performance drop across 6 benchmarks for
training free. In contrast, a concurrent method, MHA2MLA Ji et al. [2025], experienced a 21.85%
performance decline. At a compression rate of 93%, the model still maintained meaningful responses,
and after training with just 6B tokens, its performance was mostly restored. We tested both the
original and TransMLA models on three different hardware setups using vLLM, achieving up to a
10.6x speedup compared to the original GQA models, demonstrating the great potential of TransMLA.
Moreover, the TransMLA models are fully compatible with DeepSeek’s code, enjoying DeepSeek’s
ecosystem to accelerate inference and seamlessly integrate with various hardware and frameworks.

2 Related Work

In large language models, autoregressive decoding reuses past activations by storing their key–value
(KV) pairs in a cache. Because the size of this cache grows linearly with sequence length, its memory
footprint quickly becomes the limiting factor for very long contexts. Consequently, shrinking the KV
cache without compromising accuracy has become a pivotal research focus, motivating a spectrum of
architectural innovations and compression strategies.

Multi-Query Attention (MQA) Shazeer [2019] and Group-Query Attention (GQA) Ainslie et al.
[2023] shrink the KV cache by letting every query in a group share a single key and value head.
Although both schemes save memory relative to Multi-Head Attention (MHA) Vaswani et al. [2017],
they usually give up some accuracy. Multi-Head Latent Attention (MLA)—introduced with DeepSeek
V2 DeepSeek-AI [2024] and refined in later releases DeepSeek V3/R1 DeepSeek-AI [2024], Guo
et al. [2025]—offers a more favorable trade-off, delivering near-state-of-the-art quality while cutting
training and inference costs. Grouped Latent Attention (GLA) Zadouri et al. [2025] provides a
parallel-friendly implementation of latent attention that further accelerates MLA inference. By
contrast, Tensor Product Attention (TPA) Zhang et al. [2025] tackles the memory bottleneck by
dynamically factorizing activations, slashing the runtime KV cache by an order of magnitude, but
it necessitates training the model from scratch. TransMLA fills this gap: rather than proposing yet
another attention variant, it converts an existing GQA model into an MLA model with only light
fine-tuning, restoring accuracy while inheriting MLA’s memory and speed advantages.

Another approach is to optimize the KV cache of existing pre-trained models. For example, dynamic
token pruning is employed by LazyLLM Fu et al. [2024], A2SF Jo and Shin [2024], and SnapKV Li
et al. [2024]. These methods selectively prune less important tokens from the KV cache. Sharing
KV representations across layers, as in YONO Sun et al. [2024], MiniCache Liu et al. [2024c], and
MLKV Zuhri et al. [2024], reduces memory by reusing the same KV cache across multiple layers.
This can drastically lower memory usage and speed up inference. Although effective, both families
of methods usually require custom kernels or runtime tweaks, complicating deployment and limiting
adoption. TransMLA, by contrast, plugs directly into the mature DeepSeek ecosystem—converted
checkpoints load out-of-the-box, delivering MLA-level speed-ups across every DeepSeek-supported
platform.

There are two works most related to TransMLA. One is Palu Chang et al. [2024], which reduces
KV cache size by applying low-rank decomposition on both the keys and values, enabling speedup
through tailored optimizations. However, Palu does not specifically handle RoPE, which prevents it
from using the Absorb operation during inference. Therefore, Palu needs to project the compressed
representations back to their original size. This projection incurs significant computational overhead
during inference, limiting the overall acceleration. Another concurrent work, MHA2MLA Ji et al.
[2025], also claims to convert MHA to MLA and decouple RoPE from the main computational
path. It is important to clarify that TransMLA is not simply a GQA extension of MHA2MLA—both
TransMLA and MHA2MLA support MHA and GQA architectures. However, MHA2MLA determines
which RoPE dimensions to remove solely based on the norms of the query and key vectors, which
tends to cause larger information loss when pruning the same proportion of positions. Also, the
distribution of important dimensions in MHA2MLA is uneven, requiring sparse indexing that
complicates optimization and acceleration. Their work reports compression ratios of the KV cache
but does not demonstrate actual inference speedup. Furthermore, MHA2MLA directly applies joint
singular value decomposition to KV, resulting in higher loss compared to our balanced key-value
PCA method.

3

3 Preliminary

3.1 Rotary Position Embedding (RoPE)

RoPE Su et al. [2024] is a position encoding method that encodes the absolute positions with different
rotations and incorporates the explicit relative position dependency in the self-attention formulation.
It applies different rotations to tokens in different positions to encode the position information.

Consider xt ∈ Rd to be the embedding of the t-th token with the hidden size d. The RoPE operation
upon xt produces a representation xR

t that encodes both semantic and positional information:

xR
t = RoPE(xt, t) =



x
(1)
t

x
(2)
t

x
(3)
t

x
(4)
t
...

x
(d−1)
t

x
(d)
t


⊗



cos tθ1
cos tθ1
cos tθ2
cos tθ2

...
cos tθd/2
cos tθd/2


+



−x
(2)
t

x
(1)
t

−x
(4)
t

x
(3)
t
...

−x
(d)
t

x
(d−1)
t


⊗



sin tθ1
sin tθ1
sin tθ2
sin tθ2

...
sin tθd/2
sin tθd/2


, (1)

where ⊗ denotes the element-wise multiplication of two vectors, x(i)
t ∈ R denotes the i-th element

of xt, and θi = 10000−2(i−1)/d is the i-th rotation angle. If we interpret every two elements in
the embedding as a representation in the complex coordinate system, we can divide xt into paired
dimensions, where the odd-indexed dimensions x(2k−1)

t represent the real parts and the even-indexed
dimensions x(2k)

t represent the imaginary parts.

3.2 Group Query Attention

Let the t-th token of the input sequence be xt ∈ RD, where D denotes the hidden dimension. To
reduce the memory overhead of the KV cache, GQA divides the h query heads uniformly into g
groups, with all query heads within a group sharing the same key and value vectors. Specifically,
let WQ ∈ Rhd×D, WK ,WV ∈ Rgd×D and WO ∈ RD×hd be the projection matrices for the
query, key, value and output, where d = D/h denotes the dimension per head. GQA first computes
the concatenated queries qt, keys kt, and values vt, and then slices them into heads or groups for
attention computation:

[qt,1;qt,2; ...;qt,h] = qt = WQxt, (2)

[kt,1;kt,2; ...;kt,g] = kt = WKxt, (3)

[vt,1;vt,2; ...;vt,g] = vt = WV xt, (4)

where each qt,i ∈ Rd corresponds to the query vector of the i-th head, and kt,j ,vt,j ∈ Rd correspond
to the key and value vectors of the j-th group.

Using the notation in Section 3.1, after applying RoPE to qt,i,kt,i, we can obtain the attention output
for the t-th token as follows:

ot,i =

t∑
j=1

softmaxj(
qR
t,i

⊤
kR
j,⌈i/h

g ⌉
√
d

)vj,⌈i/h
g ⌉, (5)

yt = WO[ot,1;ot,2; ...;ot,h]. (6)

As we can see, in GQA, each key and value head corresponds to h
g query heads. When g = h, GQA

becomes MHA, and when g = 1, GQA becomes Multi-Query Attention (MQA).

3.3 Multi-Head Latent Attention

MLA saves KV cache by multiplying the matrix WDKV ∈ Rrkv×D with the input sequence to
obtain low-rank latent features. Then, it uses the matrices WUK and WUV ∈ Rhd×rkv to derive

4

the key k and value v representations for each attention head. Additionally, MLA also decomposes
WQ to WDQ ∈ Rrq×D and WUQ ∈ Rhd×rq , which reduces the activation memory during training.
For positional embedding, MLA uses a decoupled RoPE strategy that uses additional multi-head
queries qR

t,i ∈ RdR

and a shared key kR
t ∈ RdR

, which are generated from WQR ∈ RhdR×rq and
WKR ∈ RdR×d, to carry RoPE, where dR denotes the per-head dimension of the decoupled queries
and key.

cKV
t = WDKV xt,

[kC
t,1;k

C
t,2; ...;k

C
t,h] = kC

t = WUKcKV
t ,

kR
t = RoPE(WKRxt, t),

kt,i = [kC
t,i;k

R
t], (7)

cQt = WDQxt,

[qC
t,1;q

C
t,2; ...;q

C
t,h] = qC

t = WUQcQt ,

[qR
t,1;q

R
t,2; ...;q

R
t,h] = qR

t = RoPE(WQRcQt , t),

qt,i = [qC
t,i;q

R
t,i]. (8)

MLA supports switching between two computational paradigms tailored for different stages. During
the compute-intensive training phase, it operates in a paradigm similar to standard MHA, where the
computational overhead is slightly lower than that of conventional MHA, as shown in Equation 9.
For communication-intensive inference, it can seamlessly switch to a paradigm resembling MQA, as
described in Equation 10. In this inference paradigm, the latent features function as a shared large
KV head, which interacts with all query heads and output heads to produce the final output efficiently.
This operation is called the Absorb operation, which is crucial for accelerating inference speed.

[vC
t,1;v

C
t,2; ...;v

C
t,h] = vC

t = WUV cKV
t ,

ot,i =

t∑
j=1

softmaxj(
qT
t,ikj,i√
d+ dR

)vC
j,i,

yt = WO[ot,1;ot,2; ...;ot,h], (9)

q̂t,i = [WUK
i

⊤
qC
t,i;q

R
t,i], k̂t = [cKV

t ;kR
t],

ôt,i =

t∑
j=1

softmaxj(
q̂T
t,ik̂j√
d+ dR

)cKV
j ,

yt = WO[WUV
1 ôt,1; ...;W

UV
h ôt,h], (10)

where W
{UK,UV }
i denotes slices of the projection matrices corresponding to the i-th attention head.

One of the main contributions of this paper is the seamless support for the Absorb operation,
significantly enhancing inference speed.

4 TransMLA

In this section we formally present TransMLA, motivated by two observations:

1. For a fixed KV-cache budget, MLA is strictly more expressive than GQA. As proven in
Appendix A (and illustrated in Figure 1a), any GQA layer can be rewritten as an MLA layer by
introducing a single additional projection matrix. The reverse transformation is not always possible,
implying that MLA subsumes GQA. When Rotary Positional Embeddings (RoPE) are present, the
MLA equivalent must be expressed in the absorbed form.

2. Inference acceleration occurs only when MLA uses a smaller KV cache. Although one can
build an MLA-equivalent representation of a GQA model, speedups arise only if the number of
stored KV vectors is actually reduced. TransMLA therefore converts a GQA-based network into a
DeepSeek-like MLA architecture, allowing the transformed model to run directly on DeepSeek’s
optimized inference stack and realize the full memory–latency benefits.

4.1 Merging All Key Heads as One

Because MLA ties all KV heads to a single latent dimension, the first step in converting a GQA
layer to MLA is to merge every GQA key–value group into one latent head before any KV-cache
compression is applied. For each query head i, we introduce WUK

i ∈ Rd×gd with the group index

j =
⌈

i
h/g

⌉
− 1, and initialize the matrix WUK

i [:, jd : (j + 1)d] to be Id (identity matrix of shape
d × d), with all other elements set to 0. (We adopt the matrix indexing notation used in Python
and PyTorch, and will continue to do so throughout this work without further explanation.) This
initialization allows the projection of the key’s latent representation to be simultaneously mapped

5

Group 1 Group 2 Group 4Group 3

dim=1 dim=2 dim=3 dim=4 dim=5 dim=6 dim=7 dim=8

PCA

RoPE NoPE NoPE NoPE

Figure 2: Pipeline of RoRoPE for decoupling RoPE. Blue lines denote real-part dimensions, orange
lines denote imaginary-part dimensions. When the keys from multiple heads are concatenated,
permuting dimensions does not change the computation, so we gather the same dimension (i.e., the
same rotational frequency) across all heads and apply joint principal-component analysis—using the
identical procedure for the real and imaginary parts. For each frequency we keep a single principal
component, which captures the dominant positional variation and can be represented by a standard
RoPE in one attention head.

onto multiple query heads, with only the corresponding key head being multiplied by the appropriate
query head. Similarly, during the computation of the multiple heads of the values, the attention scores
for each head are multiplied accordingly. To keep the output unchanged, we similarly initialize WUV

i
so that only the corresponding value head is an identity mapping, while all other elements are set
to zero. Since we have now merged all the key heads into a single head, in order to ensure that this
transformation is equivalent to the original, we also merge the RoPE operations from different heads
into one large RoPE operation, denoted as R̂oPE, applied to the entire merged key head. Since the
original RoPE operation in GQA is the same for each head, R̂oPE simply applies the same RoPE
operation repeatedly for every d dimensions. In this way, the computation of GQA attention is
transformed into the following form:

[cKt ; cVt] = cKV
t = WDKV xt, WDKV =

(
WK

WV

)
∈ R2gd×D (11)

[qt,1;qt,2; ...;qt,h] = qt = WQxt, WQ ∈ Rhd×D (12)

q̂R
t,i = R̂oPE(

(
WUK

i

)⊤
qt,i, t), k̂R

t = R̂oPE(cKt , t) (13)

ôt,i =

t∑
j=1

softmaxj

((
q̂R
t,i

)⊤
k̂R
j√

d

)
cVj , (14)

yt = WO[WUV
1 ôt,1; ...;W

UV
h ôt,h]. (15)

It is evident that the total KV cache size remains unchanged since we still need to store cKV
t ∈ R2gd

for each token, which is the same as in the original GQA model. However, the dimension of each
attention head has increased by a factor of g, and the introduction of new parameters WUK

i and
WUV

i leads to higher computational costs. To achieve actual acceleration in the transformed MLA,
compressing the KV cache is therefore essential. By merging multiple KV heads, we can better
identify shared principal components and represent the KV cache in a lower-dimensional latent space.
Moreover, merging multiple key heads is crucial for efficiently decoupling RoPE in the subsequent
steps.

6

4.2 Rotating Queries and Keys to Minimize Transformation Loss Towards Decoupled RoPE

As illustrated in Figure 2, applying RoRoPE to the merged head removes the bulk of the positional
signal from K. In Equation 14, the term

(
q̂R
t,i

)⊤
k̂R
j can be expressed as the sum of inner products

over paired dimensions across multiple attention heads, incorporating positional information:

(
q̂R
t,i

)⊤
k̂R
j =

d/2∑
l=1

[
q̂
[2l−1::d]
t,i ; q̂

[2l::d]
t,i

]R⊤ [
k̂
[2l−1::d]
j ; k̂

[2l::d]
j

]R
. (16)

Here, the notation [2l :: d] is inspired by Python slicing syntax and denotes selecting elements starting
from the (2l)-th dimension, then taking every d-th element thereafter until the end of the vector. The

vector
[
q̂
[2l−1::d]
t,i ; q̂

[2l::d]
t,i

]R
thus has dimension 2g.

Since multiple key heads are concatenated into a single head and each head shares the same RoPE,
the real and imaginary components corresponding to the l-th 2D subspace (i.e., the paired two
dimensions) of RoPE within each original attention head can be expressed as follows:[

q̂
[2l−1::d]
t,i ; q̂

[2l::d]
t,i

]R
= cos tθl

[
q̂
[2l−1::d]
t,i ; q̂

[2l::d]
t,i

]
+ sin tθl

[
−q̂

[2l::d]
t,i ; q̂

[2l−1::d]
t,i

]
, (17)[

k̂
[2l−1::d]
j ; k̂

[2l::d]
j

]R
= cos jθl

[
k̂
[2l−1::d]
j ; k̂

[2l::d]
j

]
+ sin jθl

[
−k̂

[2l::d]
j ; k̂

[2l−1::d]
j

]
. (18)

When the concatenated real and imaginary components of q̂t,i and k̂j within the l-th 2-dimensional
subspace are multiplied by an orthogonal matrix Ul ∈ Rg×g, the inner product with RoPE applied
remains invariant. Specifically,

d/2∑
l=1

([
Ulq̂

[2l−1::d]
t,i ;Ulq̂

[2l::d]
t,i

])R⊤ ([
Ulk̂

[2l−1::d]
j ;Ulk̂

[2l::d]
j

])R
= q̂R⊤

t,i k̂
R
j . (19)

This demonstrates that the rotational transformation Ul preserves the RoPE-based inner product
structure. Simply put, because the same rotation values (i.e., cos tθl and sin tθl) are applied identically
to each dimension of the l-th 2D subspace across all attention heads, any orthogonal transformation
U⊤

l Ul = I applied to these dimensions within the same subspace leaves the inner product q̂R⊤

t,i k̂
R
j

unchanged. However, the preceding equation reveals a critical constraint: for the inner product’s
value to remain unchanged after transformation, the same orthogonal matrix Ul must be applied to
both the real (2l − 1) and imaginary (2l) components of the key vectors within each 2D subspace.
For a detailed proof and our proposed solution, please refer to Appendix B.

We apply Principal Component Analysis (PCA) to the attention heads in the context of RoPE,
introducing a method we call RoRoPE. Using a small dataset, we extract the key output, compute
its principal component projection matrices {Ul}l∈{1,...,d/2}, and rotate both WK and WUK (as
shown in Eq13, q̂t,i and k̂j are generated from WUK and WK respectively, so rotating q̂t,i and k̂j

can be achieved by rotating WUK and WK) using a similar procedure as described above. This
rotation effectively concentrates the essential information into the first few heads. As an equivalent
transformation, instead of discarding all non-principal components of the key, we remove their RoPE
encoding while preserving positional information within the principal components.

To enable the transformed model to utilize standard RoPE, we represent the principal component
information for corresponding positions across other heads using the dimensions of the first attention
head. However, using a one-dimensional space for all positional information proves limiting. To
address this, we exploit the similar frequencies of adjacent dimensions in RoPE, treating them as
equivalent positions. This allows us to use multiple dimensions within a single attention head to
represent positional information, a technique we refer to as FreqFold. Additional information on
FreqFold can be found in Appendix C.

4.3 A Balanced Approach to Joint Low-Rank Approximation of NoPE Keys and Values

In the previous section, we split the key heads into one carrying positional information and the others
without positional information, achieving minimal loss. We then apply Principal Component Analysis

7

(PCA) jointly on the values and the non-positional components of the keys (i.e. NoPE-Key), using
activations collected from a small calibration dataset, thereby compressing the projection matrices
into a low-rank latent space. However, we observed that although the principal components of
the keys were effectively separated with RoRoPE, the norm of the residual key features remained
significantly larger than that of the Value. This imbalance caused the direct decomposition to favor
principal component directions dominated by the keys.

To mitigate this, we scale WDK by dividing it by

α =
Et[∥WDK

NoPExt∥2]
Et[∥WDV xt∥2]

(20)

and correspondingly scale WUK by multiplying it by α. Here, WDK
RoPE ∈ Rd×D,WDK

NoPE ∈ R(g−1)d×D

represent the parts of WDK obtained after the operations described in the previous section, where
WDK

RoPE corresponds to one head that uses RoPE, and WDK
NoPE corresponds to the remaining heads that

do not use RoPE.

This transformation is mathematically equivalent and does not affect the overall model outputs, while
significantly enhancing the effectiveness of KV cache compression in subsequent steps. More details
is provided in the Appendix D.

5 Experiment

5.1 Main Experiment

In this section, we present our main experimental results. Following the experimental setup of
MHA2MLA, we converted two models—smolLM 1.7B and Llama 2 7B—into the MLA architec-
ture. We evaluated the models’ performance on six benchmarks at three stages: before conversion,
immediately after conversion without further training, and after conversion followed by training. For
the training process, we used a subset of the pretraining corpus used for the smolLM model. The
fine-tuned results of MHA2MLA are taken directly from the original paper. Our experiments were
conducted on an 8-GPU machine, each GPU having 40GB of memory and delivering 312 TFLOPS of
FP16 compute power. Detailed experimental hyperparameter settings are provided in the Appendix
E.

From Table 1, we observe that TransMLA efficiently facilitates architecture migration across various
models and KV cache compression ratios. Notably, the untrained performance of MLA models
initialized with TransMLA shows minimal degradation in capability compared to the original mod-
els—significantly less than the degradation observed with MHA2MLA under equivalent KV cache
compression. In fact, using TransMLA to compress the KV cache of Llama 2 7B to just 7.03% of
its original size still results in better performance than MHA2MLA’s compression to 31.25% on
the same model. This highlights the effectiveness of our proposed techniques includes RoRoPE,
FreqFold and activation-based balanced KV low-rank factorization.

The low-loss transformation achieved by TransMLA enables us to recover the original model per-
formance with minimal training overhead. As shown in the table, TransMLA achieves stronger
performance than MHA2MLA-6B while using significantly fewer training tokens. For instance, when
transforming smolLM 1.7B and compressing the KV cache to 31.25% of its original size, we only
need 4.9% of the training data used by MHA2MLA and 2 hours training to surpass its performance.

5.2 Key Norm Analysis Reveals the Impact of RoRoPE and FreqFold

In this section, we conduct a detailed analysis of the distribution of key activations in the attention
module to demonstrate the effectiveness of our proposed methods.

Figure 3a presents the average L2 norm of each key dimension in the first attention layer of the
LLaMA 3 8B model, computed on a subset of the WikiText-2 Merity et al. [2016] dataset. We
compare the original model (in blue), the model transformed using our RoRoPE equivalence method
(in orange), and the further approximated model using 4D FreqFold (in green). The top and bottom
halves of the plot correspond to pairs of dimensions that share the same rotation angle in RoPE,
which we refer to as the real (Re-dim) and imaginary (Im-dim) dimensions.

8

Table 1: Commonsense reasoning ability of two LLMs with TransMLA compared to MHA2MLA.
The six benchmarks include MMLU (Hendrycks et al. [2021]), ARC easy and challenge (ARC,
Clark et al. [2018]), PIQA (Bisk et al. [2020]), HellaSwag (HS, Zellers et al. [2019]), OpenBookQA
(OBQA, Mihaylov et al. [2018]), and Winogrande (WG, Sakaguchi et al. [2021]). Tokens refers to
the number of tokens used for further training after the TransMLA conversion. A value of 0 indicates
that the model was evaluated immediately after conversion, without any fine-tuning.

Model Tokens KV Mem. Avg. MMLU ARC PIQA HS OBQA WG

SmolLM-1.7B 1T – 55.90 39.27 59.87 75.73 62.93 42.80 54.85

- MHA2MLA

0
-68.75% 40.97 27.73 41.96 63.00 29.19 34.40 49.53
-81.25% 37.14 26.57 32.73 55.77 26.90 31.40 49.49
-87.50% 34.01 25.32 27.15 51.36 25.47 26.20 48.54

-68.75% 54.76 38.11 57.13 76.12 61.35 42.00 53.83
6B -81.25% 54.65 37.87 56.81 75.84 60.41 42.60 54.38

-87.50% 53.61 37.17 55.50 74.86 58.55 41.20 54.38

- TransMLA

-68.75% 51.95 35.70 55.68 73.94 53.04 39.80 53.51
0 -81.25% 47.73 32.87 47.89 69.75 48.16 36.20 51.46

-87.50% 44.12 29.97 41.72 66.87 41.15 34.80 50.28

300M -68.75% 55.24 38.60 58.95 74.97 61.52 43.00 54.38
700M -81.25% 54.78 37.79 57.53 75.52 59.88 42.80 55.17

1B -87.50% 54.01 37.24 56.32 74.81 60.08 42.40 53.20

LLaMA-2-7B 2T – 59.85 41.43 59.24 78.40 73.29 41.80 64.96

- MHA2MLA

-68.75% 37.90 25.74 32.87 59.41 28.68 28.60 52.09
0 -81.25% 34.02 25.50 26.44 53.43 27.19 22.60 49.01

-87.50% 32.70 25.41 25.79 50.60 26.52 19.40 48.46

-68.75% 59.51 41.36 59.51 77.37 71.72 44.20 62.90
6B -81.25% 59.61 40.86 59.74 77.75 70.75 45.60 62.98

-87.50% 58.96 40.39 59.29 77.75 69.70 43.40 63.22

- TransMLA

0
-68.75% 58.20 39.90 57.66 77.48 70.22 41.00 62.90
-87.50% 51.19 34.39 45.38 71.27 60.73 37.40 57.93
-92.97% 43.26 28.93 36.32 63.38 45.87 31.60 53.43

500M -68.75% 59.82 40.87 59.18 77.91 71.82 45.20 63.93
3B -87.50% 59.36 40.77 58.84 78.18 71.28 43.60 63.46
6B -92.97% 58.68 40.82 59.72 76.55 69.97 43.60 61.40

We observe that the original model exhibits a highly uneven norm distribution across key dimensions,
with numerous outliers. This suggests that naively removing RoPE from certain heads would likely
result in significant performance degradation. After applying our RoRoPE transformation, as shown
by the orange line, the key dimensions with large norms are nearly all concentrated to the first two
heads (dimension 0-128). Further applying the 4D FreqFold approximation compresses the tail (i.e.,
higher-index dimensions) even more, leading to an even sharper concentration of high-norm key
dimensions. This concentrated structure is highly beneficial for the subsequent RoPE removal step as
shown in Figure 3b.

In Figure 3b, we present the log-perplexity of the LLaMA 3 8B model on WikiText-2 as RoPE
components are progressively removed. We observe that our proposed RoRoPE method significantly
outperforms MHA2MLA’s per-head dimension selection strategy, especially at high removal ratio.
Furthermore, incorporating similar-dimension approximation leads to even better performance under
extreme removal rates. At 90% removal ration, RoRoPE + 4D-FreqFold still maintains a log-
perplexity about 2, while MHA2MLA reaches nearly 6, which no longer generates meaningful outputs.
At the same time, we observe that overly aggressive FreqFold (i.e., using too many dimensions) can
degrade performance, as the loss introduced by approximation of nearby dimensions can outweigh
the benefit in concentrating the principal components. This figure suggests that for LLaMA 3 8B, the
sweet spot lies in applying RoRoPE combined with 4D FreqFold.

9

0 64 128 192 256 320 384 448 512
0

50

100

L 2
-n

or
m

 o
f R

e-
di

m

0 64 128 192 256 320 384 448 512
Dimension

0

25

50

75

L 2
-n

or
m

 o
f I

m
-d

im

Original
RoRoPE

RoRoPE & 4D-FreqFold

(a) Key norms of the first layer.

0 20 40 60 80
RoPE Removal Ratio (%)

2

4

6

8

Lo
g

of
 P

er
pl

ex
ity Vanilla PCA

MHA2MLA
RoRoPE
RoRoPE & 2D-FreqFold
RoRoPE & 4D-FreqFold
RoRoPE & 8D-FreqFold

(b) RoPE removal results, evaluated on WikiText-2.

Figure 3: Visualization of key norms and RoPE removal results on LLaMA 3 8B model. The top and
bottom halves of the left figure correspond to pairs of dimensions that share the same rotation angle
in RoPE, which we refer to as the real (Re-dim) and imaginary (Im-dim) dimensions.

0 128 256 384 512 640 768 896 10240

5

10

15

20

Or
ig

in
al

 k
v-

no
rm

0 128 256 384 512 640 768 896 1024
Dimension

0.0

0.5

1.0

1.5

2.0

Ba
la

nc
ed

 k
v-

no
rm

Key
Value

(a) Norm magnitude of keys and values be-
fore and after KV balancing is applied.

75.0 78.125 87.5
Key-Value Cache Compression Ratio (%)

2

3

4

5

6

7

8

9

10

Lo
g

of
 P

er
pl

ex
ity

W-based
W-based with BKV

WX-based
WX-based with BKV

(b) Comparison of different methods of KV
cache compression, with and without KV bal-
ancing.

Figure 4: Visualization of the norms of keys and values for the first layer of LLaMA 3 8B and
the perplexity results after joint low-rank compression of keys and values under WikiText-2. Here,
W-based and WX-based refer to PCA applied on the attention weights and the activation outputs,
respectively. BKV denotes the application of KV balancing.

5.3 Key-Value Norm Disparity Motivates KV Balancing

In Figure 4a, we visualize the norm magnitudes of the key and value activations in the first layer
of LLaMA 3 8B before and after KV balancing. Note that both the key and value shown here are
activations after applying the RoRoPE principal component concentration, and the first head of the
key—reserved for RoPE—is excluded. As a result, the value and the remaining key components
shown in the figure are precisely the elements we aim to compress jointly into a lower-dimensional
space via PCA.

It is evident that even after removing the first head with the highest norm, the overall norm of the key
remains significantly larger than that of the value. This norm disparity poses a substantial challenge
for joint compression into a shared latent space. In particular, such imbalance can bias the PCA
toward directions aligned with the key, rather than the value, leading to suboptimal representation of
the value components.

The lower part of Figure 4a shows the norm distribution of keys and values after applying KV
balancing. At this point, the norms of keys and values become more aligned, which is beneficial for
performing joint PCA. This observation is further supported by the results in Figure 4b, where KV
balancing consistently reduces the loss incurred by jointly applying low-rank approximation to keys
and values—whether the PCA is based on weights or on activations. Figure 4b also demonstrates that
activation-based PCA yields significantly better results than weight-based PCA.

10

5.4 Hardware-Agnostic Inference Speedup with TransMLA

By converting MHA/GQA models into MLA models that are fully compatible with the DeepSeek
codebase and compressing the KV cache, TransMLA enables us to leverage all optimizations and
tooling available in DeepSeek. Using the vLLM framework, we achieve substantial real-world
inference speedups.

In Figure 5, we benchmarked the inference performance of an MLA model—with a 92.97% reduction
in KV cache size—on three consumer-grade AI accelerators with different compute capabilities and
memory sizes: 165.2 TFLOPS with 24GB memory, 312 TFLOPS with 40GB memory, and 320
TFLOPS with 64GB memory. The figure shows the inference speedup of the MLA model relative
to the original MHA model. Low-rank Q and Full-rank Q indicate whether the query projections
were also compressed. Context length represents the total sequence length (i.e., context length plus
generated tokens).

Our experiments show that the inference speedup of MLA models increases as the context length
grows, which aligns with our expectations. Since the primary performance gain of MLA stems from
KV cache compression, longer contexts lead to more substantial savings and thus higher speedups.
Remarkably, for the 8K context window on the first hardware platform, the TransMLA-transformed
model achieves an impressive 10.6x inference acceleration. To the best of our knowledge, the
MHA2MLA method has not reported any inference speedup results.

1k 2k 4k 8k
Context Length

4

6

8

10

Sp
ee

du
p

10.6xLow Rank Q = 512
Full Rank Q

(a) 165.2 TFLOPS | 24GB

1k 2k 4k 8k 16k 32k
Context Length

2

4

6

Sp
ee

du
p

6.5xLow Rank Q = 512
Full Rank Q

(b) 312 TFLOPS | 40GB

1k 2k 4k 8k 16k 32k
Context Length

1

2

3

4

5

6

Sp
ee

du
p

5.1xLow Rank Q = 512
Full Rank Q

(c) 320 TFLOPS | 64GB

Figure 5: Inference speedups with TransMLA comparing to the original LLaMA2 7B model on
three consumer-grade AI accelerators. Low-rank Q and Full-rank Q indicate whether the query
projections were also compressed. Context length represents the total sequence length.

6 Conclusion, Limitation and Future Work

In this work, we demonstrate that the expressive power of TransMLA is stronger than GQA under the
same KV cache. To help existing GQA transition to the MLA structure with minimal cost, we propose
the TransMLA method. By using the RoRoPE method, the multi-head KV positional information is
concentrated into the first head, and FreqFold further enhances this extraction effect. The positional
information of the remaining query-key heads is removed, and the Balance KV norm method is used
to jointly compress the values and the remaining heads of keys. TransMLA can convert models
such as LLaMA and Qwen into MLA-based models, and the converted model incurs very little loss
compared to the original model, with performance being recoverable through training with only a
few tokens. Additionally, TransMLA can easily leverage the DeepSeek ecosystem for accelerated
inference, achieving significant throughput improvements across various hardware platforms.

Although TransMLA significantly reduces the loss introduced by decoupling RoPE via RoRoPE
and FreqFold, and alleviates KV cache compression loss through KV balancing, the KV balancing
technique itself is relatively trivial. Are there alternative, more powerful mathematical tools that can
better handle the disparity between the norm of the keys and values and deliver improved perfor-
mance at the same compression rate, thereby enabling truly training-free conversion? Furthermore,
TransMLA needs to be validated across a broader range of models, and should be integrated with
pruning, quantization, token selection, and other optimization techniques to fully explore the upper
bounds of inference acceleration.

11

References
OpenAI. Hello GPT-4o, 2024. URL https://openai.com/index/hello-gpt-4o/.

Anthropic. Claude 3.5 sonnet, 2024. URL https://www.anthropic.com/news/
claude-3-5-sonnet.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024a.

AI@Meta. Llama 3 model card, 2024. URL https://github.com/meta-llama/llama3/blob/
main/MODEL_CARD.md.

Mistral. Cheaper, better, faster, stronger: Continuing to push the frontier of ai and making it accessible
to all, 2024. URL https://mistral.ai/news/mixtral-8x22b.

Qwen. Qwen2.5: A party of foundation models, 2024. URL https://qwenlm.github.io/blog/
qwen2.5.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024b.

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 technical
report. arXiv preprint arXiv:2412.08905, 2024.

Alec Radford. Improving language understanding by generative pre-training. 2018.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245, 2023.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 2017.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu, and
Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming heads.
arXiv preprint arXiv:2410.10819, 2024.

Zhiyang Liu, Dong Zhang, Xinyi Li, and Ji Wu. Kivi: Quantized key-value representation for efficient
long-context transformers. arXiv preprint arXiv:2402.06732, 2024b.

James Hooper, Li Dai, Zhen Zhang, and Seung-Hwan Lee. Kvquant: Quantization for efficient
key-value caching in transformer models. arXiv preprint arXiv:2402.12345, 2024.

12

https://openai.com/index/hello-gpt-4o/
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://mistral.ai/news/mixtral-8x22b
https://qwenlm.github.io/blog/qwen2.5
https://qwenlm.github.io/blog/qwen2.5

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36:34661–34710, 2023.

DeepSeek-AI. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model.
CoRR, abs/2405.04434, 2024. URL https://doi.org/10.48550/arXiv.2405.04434.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
Ning-Chi Huang, Luis Ceze, Mohamed S Abdelfattah, and Kai-Chiang Wu. Palu: Compressing
kv-cache with low-rank projection. arXiv preprint arXiv:2407.21118, 2024.

Tao Ji, Bin Guo, Yuanbin Wu, Qipeng Guo, Lixing Shen, Zhan Chen, Xipeng Qiu, Qi Zhang, and
Tao Gui. Towards economical inference: Enabling deepseek’s multi-head latent attention in any
transformer-based llms. arXiv preprint arXiv:2502.14837, 2025.

Ted Zadouri, Hubert Strauss, and Tri Dao. Hardware-efficient attention for fast decoding. arXiv
preprint arXiv:2505.21487, 2025.

Yifan Zhang, Yifeng Liu, Huizhuo Yuan, Zhen Qin, Yang Yuan, Quanquan Gu, and Andrew Chi-Chih
Yao. Tensor product attention is all you need. arXiv preprint arXiv:2501.06425, 2025.

Qichen Fu, Minsik Cho, Thomas Merth, Sachin Mehta, Mohammad Rastegari, and Mahyar Na-
jibi. Lazyllm: Dynamic token pruning for efficient long context llm inference. arXiv preprint
arXiv:2407.14057, 2024.

Hyun-rae Jo and Dongkun Shin. A2sf: Accumulative attention scoring with forgetting factor for
token pruning in transformer decoder. arXiv preprint arXiv:2407.20485, 2024.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
arXiv preprint arXiv:2404.14469, 2024.

Tian Sun, Li Zhang, and Shuang Wu. You only need one: Efficient kv sharing across transformer
layers. Proceedings of the 42nd International Conference on Machine Learning (ICML), 2024.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Minicache: Kv
cache compression in depth dimension for large language models. arXiv preprint arXiv:2405.14366,
2024c.

Zayd Muhammad Kawakibi Zuhri, Muhammad Farid Adilazuarda, Ayu Purwarianti, and Alham Fikri
Aji. Mlkv: Multi-layer key-value heads for memory efficient transformer decoding. arXiv preprint
arXiv:2406.09297, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021. URL https://openreview.net/forum?id=d7KBjmI3GmQ.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the AI2 reasoning challenge.
CoRR, abs/1803.05457, 2018. URL http://arxiv.org/abs/1803.05457.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning about
physical commonsense in natural language. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 7432–7439. AAAI Press, 2020. doi:
10.1609/AAAI.V34I05.6239. URL https://doi.org/10.1609/aaai.v34i05.6239.

13

https://doi.org/10.48550/arXiv.2405.04434
https://openreview.net/forum?id=d7KBjmI3GmQ
http://arxiv.org/abs/1803.05457
https://doi.org/10.1609/aaai.v34i05.6239

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? In Anna Korhonen, David R. Traum, and Lluís Màrquez,
editors, Proceedings of the 57th Conference of the Association for Computational Linguistics,
ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages 4791–4800.
Association for Computational Linguistics, 2019. doi: 10.18653/V1/P19-1472. URL https:
//doi.org/10.18653/v1/p19-1472.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? A new dataset for open book question answering. In Ellen Riloff, David Chiang,
Julia Hockenmaier, and Jun’ichi Tsujii, editors, Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018,
pages 2381–2391. Association for Computational Linguistics, 2018. doi: 10.18653/V1/D18-1260.
URL https://doi.org/10.18653/v1/d18-1260.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: an
adversarial winograd schema challenge at scale. Commun. ACM, 64(9):99–106, 2021. doi:
10.1145/3474381. URL https://doi.org/10.1145/3474381.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von
Werra. Smollm-corpus. 2024. URL https://huggingface.co/datasets/HuggingFaceTB/
smollm-corpus.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu: the
finest collection of educational content, 2024a. URL https://huggingface.co/datasets/
HuggingFaceFW/fineweb-edu.

Xun Wu, Shaohan Huang, and Furu Wei. Mixture of lora experts. arXiv preprint arXiv:2404.13628,
2024.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov,
Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul,
Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii,
Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan
Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov,
Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri
Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten
Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa
Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder 2 and the stack v2:
The next generation, 2024b.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. Openwebmath: An open
dataset of high-quality mathematical web text, 2023.

Stack Overflow. Stack overflow, 2025. URL https://stackoverflow.com. Accessed: 2025-05-
21.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martín Blázquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydlíček, Agustín Piqueres Lajarín, Vaibhav Srivastav,
et al. Smollm2: When smol goes big–data-centric training of a small language model. arXiv
preprint arXiv:2502.02737, 2025a.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martín Blázquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydlíček, Agustín Piqueres Lajarín, Vaibhav Srivastav,
Joshua Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo
Larcher, Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and
Thomas Wolf. Smollm2: When smol goes big – data-centric training of a small language model,
2025b. URL https://arxiv.org/abs/2502.02737.

14

https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.18653/v1/d18-1260
https://doi.org/10.1145/3474381
https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus
https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://stackoverflow.com
https://arxiv.org/abs/2502.02737

A Enhanced Expressive Power of MLA with Decoupled RoPE

A.1 Introduction

This section provides a theoretical analysis to demonstrate that Multi-Head Latent Attention (MLA)
with decoupled Rotary Position Embedding (RoPE), as described in Section 3.3 of the main paper,
possesses greater expressive power than Grouped-Query Attention (GQA) (Section 3.2). This analysis
assumes comparable KV cache sizes and number of query heads.

Our primary argument focuses on the core projection mechanisms that generate queries, keys, and
values, abstracting away from the specifics of RoPE application initially. We first present the following
proposition concerning the relative expressiveness of these core mechanisms:

Proposition 1. Given the same KV cache size and number of query heads, the expressiveness of the
core attention projection mechanisms follows the order: GQA < MLAFactorized < MQA.

Here, MLAFactorized refers to an attention mechanism employing low-rank factorization for its
key and value projections, representing the content-processing aspect of the full MLA. It is im-
portant to note that in the proposition, the query projection in MLAFactorized does not undergo
low-rank factorization; this differs from the full MLA, where the query is also factorized. After
proving this proposition, we will discuss how the full MLA architecture, which incorporates such
an MLAFactorized core for its content components and an MQA core for its decoupled RoPE com-
ponents, is thereby more expressive than GQA. For this analysis, we primarily consider the impact
of the architectural structure on representational capacity, setting aside the direct effects of RoPE
itself on the expressiveness comparison between the fundamental GQA, MLA-Factorized, and MQA
structures.

< <

Cached	During	Inference

MQA!"#

𝑇

GQA!"#

𝑑

···

···

𝑔

𝑔

MLA!"#

𝒑𝒓𝒐𝒋

𝑔𝑑ℎ	

𝒑𝒓𝒐𝒋

𝑑 𝑔𝑑

Q

K

V

Figure 6: Comparison of Multi-Query Attention (MQA), Group Query Attention (GQA), and Multi-
Head Latent Attention (MLA). In this work, we illustrate that given the same KV cache size, the
expressiveness increases in the order of GQA, MLA, and MQA. In the figure, h, d, g denote the
number of heads, hidden dimension of each head, and the number of groups (K/V heads) in GQA,
respectively. In MQA, the head dimension is set to gd to align the KV cache size with GQA and
MLA. As a result, the KV cache size per token per layer for all three approaches is 2gd

A.2 Proof of Proposition 1

Let D be the hidden dimension of the input token xt ∈ RD, h be the number of query heads, and
d = D/h be the dimension per head. In GQA, query heads are divided into g groups. For fair KV
cache comparison, the latent dimension for keys and values in MLAFactorized (rkv) and the head
dimension of MQA will be related to gd. Specifically, if the KV cache per token in GQA is 2gd for
both keys and values, then in MLAFactorized, rkv = 2gd, and in MQA, the head dimension is also
2gd; this ensures the KV cache sizes are aligned.

15

A.2.1 GQA ≤ MLAFactorized

In GQA, query head qt,i attends to key kj,⌈i/(h/g)⌉ and value vj,⌈i/(h/g)⌉. The GQA key projection
WK ∈ Rgd×D produces g distinct key vectors [kt,1; . . . ;kt,g]. Similarly, WV ∈ Rgd×D produces
value vectors. We define effective per-query-head projection matrices W ′K ∈ Rhd×D and W ′V ∈
Rhd×D for GQA:

W ′K =

W ′K
1
...

W ′K
h

 ,where W ′K
i = WK

⌈i/(h/g)⌉, (21)

W ′V =

W ′V
1
...

W ′V
h

 ,where W ′V
i = WV

⌈i/(h/g)⌉. (22)

Here, WK
k is the k-th d×D block of WK . Thus, k′

j,i = W ′K
i xj = kj,⌈i/(h/g)⌉, and similarly for

values. The matrices W ′K and W ′V have ranks at most gd.

An MLAFactorized mechanism generates keys via kj,i = (WUK(WDKV xj))i, where WDKV ∈
Rrkv×D and WUK ∈ Rhd×rkv . A similar formulation applies for values with WUV ∈ Rhd×rkv .

To demonstrate expressive capability, GQA ≤ MLAFactorized, we set rkv = 2gd. Let WDKV =(
WK

WV

)
∈ R2gd×D. We seek WUK ,WUV ∈ Rhd×2gd such that W ′K = WUKWDKV ,W ′V =

WUV WDKV . This is achieved by setting WUK
i ,WUV

i ∈ Rd×2gd (the block for head i) as selector
matrices:

WUK
i = [0d×d, . . . ,0d×d︸ ︷︷ ︸

k−1 blocks

, Id×d,0d×d, . . . ,0d×d︸ ︷︷ ︸
2g−k blocks

], (23)

WUV
i = [0d×d, . . . ,0d×d︸ ︷︷ ︸

g+k−1 blocks

, Id×d,0d×d, . . . ,0d×d︸ ︷︷ ︸
g−k blocks

], (24)

where k = ⌈i/(h/g)⌉. Thus, GQA’s key/value generation can be replicated by an MLAFactorized

model with rkv = 2gd and specific sparse structures for WUK and WUV . The KV cache size
2gd× (sequence length) is preserved since we will be caching cKV

j = WDKV xj ∈ R2gd. On that
account, the theoretical expressive power of GQA is less than or equal to that of MLAFactorized given
the same KV cache size.

A.2.2 MLAFactorized ≤ MQA

Consider an MLA-Factorized model where queries are qt,i = WQ
i xt (assuming WQ

i ∈ Rd×D is the
i-th block of WQ) and keys are kj,i = (WUK

i (WDKV xj)). The attention score for head i involves
q⊤
t,ikj,i:

q⊤
t,ikj,i = (WQ

i xt)
⊤(WUK

i (WDKV xj)). (25)

This can be rewritten as:

q⊤
t,ikj,i = ((WUK

i)⊤WQ
i︸ ︷︷ ︸

W ′Q
i

xt)
⊤(WDKV xj). (26)

16

Let q̂t,i = W ′Q
i xt ∈ R2gd and cKV

j = WDKV xj ∈ R2gd. The computation of attention output
becomes:

ot,i =
∑
j

softmaxj(
q̂⊤
t,ic

KV
j√
d

)WUV
i cKV

j , (27)

yt = WO[ot,1;ot,2; ...;ot,h]

= WO


WUV

1

WUV
2

. . .
WUV

h


︸ ︷︷ ︸

W ′O


softmaxj(

q̂⊤
t,1c

KV
j√
d

)cKV
j

...

softmaxj(
q̂⊤
t,1c

KV
j√
d

)cKV
j

 . (28)

This is an MQA formulation where each modified query q̂t,i (now of dimension 2gd) attends to a
shared key and value cKV

j . This indicates that the computations within MLA-Factorized can be
structured to use shared intermediate key and value representations akin to MQA’s core. Thus, any
MLA-Factorized model can be represented as an MQA model with a shared key/value of dimension
2gd.

A.2.3 Strict Inequalities: GQA < MLAFactorized < MQA

The relationships are strict:

GQA < MLAFactorized When GQA is represented as an MLAFactorized model, the up-projection ma-
trices WUK and WUV must adopt specific sparse, block-selector structures. A general MLAFactorized

model imposes no such constraints; WUK and WUV are typically dense and fully learnable. This
allows a general MLAFactorized to create h distinct key (and value) vectors by combining features
from the rkv-dimensional latent space in complex ways. GQA is restricted to g unique key (and
value) vectors that are merely replicated h/g times. If h > g, MLAFactorized can generate a richer
set of interaction patterns. Thus, MLAFactorized has strictly greater expressive power.

MLAFactorized < MQA Consider the bilinear form x⊤
t Mxj in the attention score. In MLAFactorized,

for head i, MMLA,i = (WQ
i)⊤WUK

i WDKV . The maximum rank of the transformation is
determined by the smallest one among the ranks of WQ

i ∈ Rd×D, WUK
i ∈ Rd×2gd, and

WDKV ∈ R2gd×D, which is at most d.

However, in the MQA form derived from MLAFactorized, the rank of the interaction matrix here,
(W ′Q

i)⊤WDKV , is determined by the smallest one among the ranks of W ′Q
i ∈ R2gd×D and

WDKV ∈ R2gd×D, which is at most 2gd.

Since 2gd ≥ d, MQA allows for a potentially higher-rank interaction between the (modified) query
and the shared key representations compared to the per-head effective rank in MLAFactorized’s
original formulation. This indicates that MQA has a greater representational capacity for the scoring
mechanism.

A.3 Expressiveness of MLA with Decoupled RoPE

The full MLA architecture, as defined in Section 3.3 (main paper), employs a decoupled RoPE
strategy. The query qt,i and key kt,i for head i (in the MHA-like training paradigm, Equation 9) are:

qt,i = [qC
t,i;q

R
t,i] (29)

kt,i = [kC
t,i;k

R
t] (30)

where kR
t is a shared RoPE key component across all heads for token t. The bilinear attention score

(numerator of the softmax argument) for head i between query at t and key at j is:

(qC
t,i)

⊤kC
j,i + (qR

t,i)
⊤kR

j (31)

Let’s analyze the two components of this score:

17

1. Content Component Interaction: (qC
t,i)

⊤kC
j,i. The content keys kC

j,i are derived from
WUK(WDKV xj). This key generation mechanism for kC

j,i is precisely that of the
MLAFactorized model discussed in Section A.1. As established, MLA-Factorized is strictly
more expressive than GQA for the non-positional part of the representation.

2. Positional Component Interaction: (qR
t,i)

⊤kR
j . This interaction, where h distinct query-

side RoPE components qR
t,i attend to a single, shared key-side RoPE component kR

j , is an
MQA structure specifically for the positional information. As shown in Section A.2.3, MQA
is strictly more expressive than MLAFactorized, and by extension, GQA.

In summary, we have demonstrated that the expressive power of MLA with decoupled RoPE is
stronger than that of the traditional GQA. However, it is worth noting that in the previously proven
proposition, the MLAFactorized does not have a low-rank decomposition on the query; this differs
from DeepSeek MLA. In the full MLA architecture, the query is also decomposed.

B Proof of RoPE Inner Product Invariance under Orthogonal
Transformation

In this subsection, we provide a rigorous proof of Equation 19, namely:

d/2∑
l=1

([
Ulq̂

[2l−1::d]
t,i ;Ulq̂

[2l::d]
t,i

])R⊤ ([
Ulk̂

[2l−1::d]
j ;Ulk̂

[2l::d]
j

])R
= q̂R⊤

t,i k̂
R
j .

Here, d is the dimension of each original attention head. The notation q
[2l−1::d]
t,i (and similarly for

other terms) refers to an h-dimensional vector collecting the (2l− 1)-th components from each of the
h original attention heads. The matrix Ul is an h× h orthogonal matrix. The superscript R denotes
the application of RoPE.

Proof. For the sake of convenience, we omit all i, j, k and let qx,l = q
[2l−1::]
t,i and qy,l = q

[2l::]
t,i .

These are h-dimensional vectors. Similarly, let kx,l = k
[2l−1::]
j and ky,l = k

[2l::]
j .

The RoPE transformation, as defined by Equations (17) and (18) in the main text, applies as follows
for a query vector at position t and key vector at position j within the l-th subspace:

For the query vector components:

(qx,l)
R = qx,l cos(tθl)− qy,l sin(tθl)

(qy,l)
R = qx,l sin(tθl) + qy,l cos(tθl)

For the key vector components:

(kx,l)
R = kx,l cos(jθl)− ky,l sin(jθl)

(ky,l)
R = kx,l sin(jθl) + ky,l cos(jθl)

We use the shorthand ct = cos(tθl), st = sin(tθl), cj = cos(jθl), and sj = sin(jθl).

The right-hand side (RHS) of Equation (19) is given by the definition of the RoPE inner product:

qR
t,i

⊤
kR
j =

d/2∑
l=1

[
(qx,l)

R; (qy,l)
R
]⊤ [

(kx,l)
R; (ky,l)

R
]

=

d/2∑
l=1

(
((qx,l)

R)⊤(kx,l)
R + ((qy,l)

R)⊤(ky,l)
R
)

18

Let Sl be the l-th term in this sum:

Sl = (ctqx,l − stqy,l)
⊤(cjkx,l − sjky,l) + (stqx,l + ctqy,l)

⊤(sjkx,l + cjky,l)

= ctcjq
⊤
x,lkx,l − ctsjq

⊤
x,lky,l − stcjq

⊤
y,lkx,l + stsjq

⊤
y,lky,l

+ stsjq
⊤
x,lkx,l + stcjq

⊤
x,lky,l + ctsjq

⊤
y,lkx,l + ctcjq

⊤
y,lky,l

= (ctcj + stsj)(q
⊤
x,lkx,l + q⊤

y,lky,l) + (stcj − ctsj)(q
⊤
x,lky,l − q⊤

y,lkx,l)

= cos((t− j)θl)(q
⊤
x,lkx,l + q⊤

y,lky,l) + sin((t− j)θl)(q
⊤
x,lky,l − q⊤

y,lkx,l).

Now, let’s analyze the left-hand side (LHS) of Equation (19). Let q′
x,l = Ulqx,l and q′

y,l = Ulqy,l.
Similarly, let k′

x,l = Ulkx,l and k′
y,l = Ulky,l. The l-th term of the LHS sum, denoted S′

l , is:

S′
l =

(
((q′

x,l)
R)⊤(k′

x,l)
R + ((q′

y,l)
R)⊤(k′

y,l)
R
)
.

This has the same structure as Sl, just with primed variables:

S′
l = cos((t− j)θl)((q

′
x,l)

⊤k′
x,l + (q′

y,l)
⊤k′

y,l) + sin((t− j)θl)((q
′
x,l)

⊤k′
y,l − (q′

y,l)
⊤k′

x,l).

We need to show that the dot product terms involving primed variables are equal to their unprimed
counterparts. Consider the first coefficient term:

(q′
x,l)

⊤k′
x,l + (q′

y,l)
⊤k′

y,l = (Ulqx,l)
⊤(Ulkx,l) + (Ulqy,l)

⊤(Ulky,l)

= q⊤
x,lU

⊤
l Ulkx,l + q⊤

y,lU
⊤
l Ulky,l

= q⊤
x,lkx,l + q⊤

y,lky,l.

The last equation holds because Ul is an orthogonal matrix. This matches the corresponding term in
Sl.

The same applies to the second coefficient term. In this way, we have proven that S′
l = Sl for each

l ∈ {1, . . . , d/2}. This implies that the LHS of Equation (19) is equal to its RHS:

d/2∑
l=1

([
Ulq

[2l−1::]
t,i ;Ulq

[2l::]
t,i

])R⊤ ([
Ulk

[2l−1::]
j ;Ulk

[2l::]
j

])R
= qR

t,i

⊤
kR
j .

This completes the proof, demonstrating that the orthogonal transformation Ul applied to the h-
dimensional vectors representing the l-th 2D subspace components across heads preserves the
RoPE-based inner product structure.

In practice, we leverage this rotational invariance property to find a set of optimal orthogonal matrices
{Ul} that concentrate the principal components of the key vectors into the first few attention heads.
The preceding proof reveals a critical constraint: for the inner product’s value to remain unchanged
after transformation, the same orthogonal matrix Ul must be applied to both the real (2l − 1) and
imaginary (2l) components of the key vectors within each 2D subspace. This requirement precludes
performing separate PCA on the real and imaginary parts. We must therefore find a single rotation
that is jointly optimal for both.

Specifically, we formulate this as a joint optimization problem. First, we process a calibration
dataset (e.g., Wikitext-2) to collect the key activations at each layer. For each RoPE subspace
l ∈ {1, . . . , d/2}, we obtain two collections of n × h-dimensional matrices (where n denotes the
number of samples): the "real" parts {Kx,l}l and the "imaginary" parts {Ky,l}l. To find a single
transformation Ul that simultaneously compresses the information from both sets into the first few
heads, we proceed as follows.

Let σx,l = K⊤
x,lKx,l and σy,l = K⊤

y,lKy,l be the h×h covariance matrices of the real and imaginary
key components, respectively. Our objective is to find an orthogonal matrix Ul that maximizes
the variance—or energy—concentrated in the first m heads after rotation. This corresponds to
maximizing the trace of the top-left m×m submatrix of the summed covariance of the rotated vectors.
The problem is formally stated as:

max
Ul

Tr
[
(UT

l (σx,l + σy,l)Ul):m,:m

]
s.t. UT

l Ul = I. (32)

19

Group 1 Group 2 Group 4Group 3

dim=[1,3] dim=[2,4] dim=[5,7] dim=[6,8]

PCA

RoPE NoPE NoPE NoPE

Figure 7: Pipeline of RoRoPE with FreqFold. RoRoPE encodes the entire frequency spectrum of all
attention heads in a single latent dimension, which limits its expressive power. FreqFold remedies
this by clustering adjacent-frequency dimensions and extracting their principal components jointly,
allocating a higher-dimensional subspace to similar features. This richer representation enables Krope

to retain far more positional information.

Here, Ul is the h × h orthogonal optimization variable, and (·):m,:m denotes the top-left m × m
submatrix. The solution to this trace maximization problem is obtained by performing an eigende-
composition on the summed covariance matrix σx,l + σy,l. The resulting matrix Ul, whose columns
are the eigenvectors sorted in descending order of their corresponding eigenvalues, is the optimal
orthogonal transformation Ul.

By applying this rotation, we ensure that the principal components from both the real and imaginary
dimensions of the keys are aligned and concentrated within the first few heads. Consequently, we can
discard the RoPE components from the remaining heads in both queries and keys while preserving
the most significant positional information, thereby minimizing the performance degradation.

C FreqFold: Detailed Mechanism, Example, and PCA Efficiency

This appendix provides a detailed explanation of the FreqFold technique, illustrates its operation with
a concrete example, and formally connects its benefits to a general principle of Principal Component
Analysis (PCA) concerning structured data. This justification clarifies FreqFold’s role in minimizing
transformation loss towards decoupled RoPE within the RoRoPE framework (Section 4.2).

C.1 Detailed Explanation of FreqFold and RoRoPE’s PCA

In the RoRoPE framework, Rotary Position Embedding (RoPE) is applied. RoPE encodes positional
information by rotating pairs of feature dimensions. For each RoPE frequency index l ∈ {1, . . . , d/2},
the corresponding pair of dimensions ([2l − 1 :: d], [2l :: d]) from query and key vectors are rotated.
When multiple original attention heads are used (say, g heads), and their key/query projection outputs
are concatenated, the RoPE operation for a specific frequency index l applies to a 2g-dimensional
vector segment (formed by concatenating the l-th 2D RoPE subspace from each of the g heads).
RoRoPE then applies PCA via matrices {Ul}d/2l=1 to these 2g-dimensional segments, independently
for each frequency index l.

The core idea of FreqFold is to approximate numerically similar RoPE base frequencies as being
effectively identical. For instance, if RoPE uses original base frequencies θl1 , θl2 , . . . , θlM that are
close in value, MD-FreqFold might treat them all as a single, representative frequency θ∗.

20

This approximation has a significant implication for how PCA is applied in RoRoPE:

• Without FreqFold (Standard RoRoPE PCA): For each distinct RoPE frequency index l, a
separate PCA transformation Ul is learned and applied to the corresponding 2g-dimensional
key/query segments.

• With FreqFold: If M original RoPE frequency indices (say l1, . . . , lM) are grouped
together by FreqFold due to their frequency similarity, the M corresponding 2g-dimensional
segments are effectively concatenated. Instead of M separate PCAs on 2g-dimensional
vectors, a single PCA is performed on the resulting M · 2g-dimensional vectors.

C.1.1 Illustrative Example of FreqFold

Let’s consider a scenario with g = 2 key heads, and each head has dhead = 8 dimensions. Thus, there
are d/2 = 8/2 = 4 distinct RoPE frequency indices per head, which we denote as ϕ1, ϕ2, ϕ3, ϕ4.
The total number of dimensions is 2× 8 = 16. The RoPE angles for these 16 dimensions could be
conceptualized as follows (repeating for each pair, and across heads):

• Head 1 (dims 1-8): (ϕ1, ϕ1), (ϕ2, ϕ2), (ϕ3, ϕ3), (ϕ4, ϕ4)

• Head 2 (dims 9-16): (ϕ1, ϕ1), (ϕ2, ϕ2), (ϕ3, ϕ3), (ϕ4, ϕ4)

Case 1: RoRoPE without FreqFold For each frequency index ϕl, RoRoPE groups the corresponding
dimensions from all g = 2 heads. Each such group forms 2g = 2 × 2 = 4-dimensional vectors
(across N samples).

• Group for ϕ1: Dimensions {1, 2} from Head 1 and {9, 10} from Head 2. PCA is applied to
these N samples of 4D vectors.

• Group for ϕ2: Dimensions {3, 4} from Head 1 and {11, 12} from Head 2. PCA is applied
to these N samples of 4D vectors.

• Group for ϕ3: Dimensions {5, 6} from Head 1 and {13, 14} from Head 2. PCA is applied
to these N samples of 4D vectors.

• Group for ϕ4: Dimensions {7, 8} from Head 1 and {15, 16} from Head 2. PCA is applied
to these N samples of 4D vectors.

Here, RoRoPE performs 4 separate PCA operations.

Case 2: RoRoPE with 2D-FreqFold 2D-FreqFold implies we are pairing up original frequencies.
Suppose FreqFold approximates ϕ1 ≈ ϕ2 (calling this effective frequency ΦA = ϕ1) and ϕ3 ≈ ϕ4

(calling this ΦB = ϕ3).

• Effective Group for ΦA: This group now includes all dimensions originally associated with
ϕ1 OR ϕ2.

– Original ϕ1-dimensions: {1, 2} from Head 1; {9, 10} from Head 2. (Forms a 4D
segment Sϕ1)

– Original ϕ2-dimensions: {3, 4} from Head 1; {11, 12} from Head 2. (Forms a 4D
segment Sϕ2

)

With FreqFold, these segments Sϕ1
and Sϕ2

are concatenated. PCA is now applied to the N
samples of (4 + 4) = 8-dimensional vectors formed by [Sϕ1 , Sϕ2]. Effectively, dimensions
{1, 2, 3, 4} from Head 1 are combined with {9, 10, 11, 12} from Head 2.

• Effective Group for ΦB: Similarly, this group includes dimensions originally for ϕ3 OR
ϕ4.

– Original ϕ3-dimensions: {5, 6} from Head 1; {13, 14} from Head 2. (Forms Sϕ3)
– Original ϕ4-dimensions: {7, 8} from Head 1; {15, 16} from Head 2. (Forms Sϕ4

)

PCA is applied to the N samples of 8-dimensional vectors formed by [Sϕ3
, Sϕ4

].

Here, RoRoPE with FreqFold performs 2 PCA operations, but each operates on larger, 8-dimensional
vectors which are concatenations of what were previously separate PCA targets.

21

C.2 Formalizing the Benefit of FreqFold in PCA

The example above illustrates that FreqFold causes a re-grouping and concatenation of data segments
prior to PCA. The benefit of this concatenation is explained by the following proposition. It states
that performing PCA jointly on these concatenated segments (as FreqFold enables) is more effective
at preserving variance (and thus minimizing loss) than the alternative of performing separate PCAs
on the original, smaller segments and then notionally combining their outcomes.

Consider one such FreqFold merge: suppose M original RoPE frequency indices l1, . . . , lM are
deemed equivalent by FreqFold. Without FreqFold, each lp would correspond to a dataset Xp (e.g.,
N samples of 2g-dimensional key segments). With FreqFold, these M datasets are concatenated into
a single larger dataset Xmerged = [X1, X2, . . . , XM], and PCA is applied to Xmerged.
Proposition 2. Let M distinct groups of key segments X1, X2, . . . , XM be identified. Each Xp ∈
RN×d′

(where p ∈ {1, . . . ,M}) consists of N samples of d′-dimensional vectors. Assume data in
each Xp is mean-centered. Let Sp = 1

N−1X
T
p Xp ∈ Rd′×d′

be its covariance matrix. FreqFold
causes these M groups to be merged for a single PCA operation.

Define V1 =
∑M

p=1 λp,1, where λp,1 is the largest eigenvalue of Sp. This V1 represents the sum of
variances if each of the M original groups Xp were individually reduced to its single most dominant
dimension.

Let Z = [X1, X2, . . . , XM] ∈ RN×(M ·d′) be the dataset formed by concatenating the features
(columns) of these M groups. Let Sconcat =

1
N−1Z

TZ ∈ R(M ·d′)×(M ·d′) be its covariance matrix.

Define V2 =
∑M

j=1 µj , where µ1 ≥ µ2 ≥ . . . ≥ µM are the M largest eigenvalues of Sconcat. This
V2 represents the variance captured if the concatenated data Z is reduced to M dimensions using
PCA.

Then, the variance captured by the joint PCA on the FreqFold-merged data (V2) is greater than or
equal to the sum of variances from optimally reducing each original group to one dimension (V1):

V2 ≥ V1

This proposition explains that FreqFold’s strategy of enabling PCA over larger, concatenated segments
(formed by merging data from RoPE frequencies deemed similar) is mathematically favored for
variance preservation compared to separate, more fragmented PCAs.

C.3 Proof of Proposition 2

The objective is to prove that V2 ≥ V1, using the notation from Proposition 2. The proof strategy is to
construct a specific M -dimensional subspace for the concatenated data Z. We show that the variance
captured by projecting Z onto this particular subspace equals V1. Since the PCA procedure yielding
V2 finds the optimal M -dimensional subspace maximizing captured variance, V2 must be at least V1.

Let λp,1 be the largest eigenvalue of Sp (covariance of Xp), and wp,1 ∈ Rd′
be its corresponding

eigenvector. So, Spwp,1 = λp,1wp,1 and wT
p,1wp,1 = 1. The variance λp,1 = wT

p,1Spwp,1.
V1 =

∑M
p=1 λp,1.

For the concatenated data Z, V2 =
∑M

j=1 µj . By Ky Fan’s theorem for matrix eigenvalues:

V2 = max
U∈R(M·d′)×M

UTU=IM

Tr(UTSconcatU)

where U ’s columns form an orthonormal basis for an M -dimensional subspace of RM ·d′
.

Construct U∗ = [u∗
1, . . . ,u

∗
M] ∈ R(M ·d′)×M . For p ∈ {1, . . . ,M}, define u∗

p ∈ RM ·d′
:

u∗
p =


0d′×1

...
wp,1 (as the p-th block of size d′)

...
0d′×1


22

The set {u∗
1, . . . ,u

∗
M} is orthonormal. The variance retained by projecting Z onto the subspace of

U∗ is:

Tr((U∗)TSconcatU
∗) =

M∑
p=1

(u∗
p)

TSconcatu
∗
p

Let Sqr be the (q, r)-th block of Sconcat, where Sqr = 1
N−1X

T
q Xr. Note Spp = Sp. Each

term (u∗
p)

TSconcatu
∗
p = wT

p,1Sppwp,1 = wT
p,1Spwp,1 = λp,1. So, Tr((U∗)TSconcatU

∗) =∑M
p=1 λp,1 = V1. Since V2 is the maximum possible variance:

V2 ≥ Tr((U∗)TSconcatU
∗) = V1

Thus, V2 ≥ V1. This proves Proposition 2.

C.4 Discussion on the Trade-off in FreqFold

While Proposition 2 demonstrates a clear benefit of FreqFold in terms of PCA efficiency—specifically,
that merging M original frequency groups allows for greater variance preservation when reducing to
M dimensions—it is crucial to acknowledge an inherent trade-off. The foundational assumption of
FreqFold is the approximation of numerically similar RoPE base frequencies as effectively identical.
This approximation, by its very nature, introduces a degree of deviation from the original, precise
RoPE formulation.

The extent of this deviation, and thus the potential loss in the fidelity of positional encoding, typically
correlates with how aggressively frequencies are grouped. A larger M or a looser criterion for
similarity when grouping frequencies can amplify this approximation error. Consequently, while
increasing the dimensionality of vectors undergoing PCA is beneficial from the perspective of PCA
variance capture as shown by the proposition, it may simultaneously increase the lossiness of the
RoPE approximation itself. Therefore, the practical application of FreqFold requires a careful
balancing act. The parameter M (representing the number of original RoPE frequencies treated as
one effective frequency for PCA purposes) or the specific grouping strategy for frequencies must be
chosen to optimize this trade-off.

D Balancing Key-Value Norms and Low-Rank Approximation

This appendix elaborates on the Key-Value (KV) balancing technique and the subsequent joint low-
rank approximation applied to the NoPE (No Positional Encoding) components of the keys and the
values, as mentioned in Section 4.3 of the main paper. After the RoRoPE procedure (Section 4.2), the
key projection matrix WK is effectively split into two components: WDK

RoPE ∈ Rd×D corresponding
to the single head that retains RoPE, and WDK

NoPE ∈ R(g−1)d×D corresponding to the remaining g − 1
head components that do not use RoPE. The value projection matrix is denoted as WDV ∈ Rgd×D.

D.1 KV Balancing: Purpose and Formulation

Purpose The primary goal of KV balancing is to ensure that the principal component analysis
(PCA), when applied jointly to the NoPE key and value activations, is not disproportionately in-
fluenced by components with larger norms. We observed that the activations derived from WDK

NoPE
(i.e., kNoPE,t = WDK

NoPExt) often have a significantly larger average norm than those from WDV (i.e.,
vt = WDV xt). Without balancing, PCA would predominantly capture the variance within the NoPE
key components, potentially neglecting important variations in the value components.

Formulation To address this imbalance, we introduce a scaling factor α. This factor is computed
as the ratio of the expected L2 norms of the NoPE key activations to the value activations, based on a
calibration dataset:

α =
Et[∥WDK

NoPExt∥2]
Et[∥WDV xt∥2]

(33)

where xt ∈ RD is the t-th input token.

While the main paper states scaling WDK
NoPE by 1/α and WUK by α for mathematical equivalence in

the model’s output, for the purpose of deriving the PCA projection, we effectively use scaled NoPE

23

key activations. That is, the activations used to compute the PCA basis are k′
NoPE,t = 1/α ·WDK

NoPExt

and vt = WDV xt. This ensures that the PCA process considers features from keys and values on a
more equitable footing with respect to their magnitudes. The subsequent low-rank decomposition will
then be applied to WDK

NoPE and WDV , using the PCA basis derived from these balanced activations.

D.2 Joint Low-Rank Approximation of NoPE Keys and Values using PCA

After determining the scaling factor α, we proceed to compress the projection matrices associated
with the NoPE keys (WDK

NoPE) and all values (WDV) jointly.

The process is as follows:

1. Collect Calibrated Activations: A small calibration dataset (WikiText-2) is used. For each input
xt from this dataset, we compute the scaled NoPE key activations k′

NoPE,t and the value activations
vt. These are concatenated to form combined activation vectors:

cNoPE,t =

(
k′

NoPE,t
vt

)
∈ R(2g−1)d (34)

2. Perform PCA: PCA is performed on the set of collected combined activation vectors {cNoPE,t}.
This involves computing the covariance matrix of these vectors and finding its principal components.
The eigenvectors (corresponding to the largest eigenvalues) are selected to form the columns of a
projection matrix RKV ∈ R((2g−1)d)×rkv , where rkv is the reduced rank. This matrix RKV captures
the directions of highest variance in the (balanced) combined NoPE key and value activation space.

3. Low-Rank Decomposition of Projection Matrices: Let WDKV =

(
WDK

NoPE
WDV

)
∈ R((2g−1)d)×D

be the initial projection matrix that transforms the input xt into an intermediate NoPE Key and Value

representation cNoPE,t = WDKV xt. Further, let WUKV =

(
WUK

NoPE 0
0 WUV

)
∈ R2hd×((2g−1)d)

represent the subsequent collective projection matrix that takes cNoPE,t and processes it to produce
the actual keys and values required by the attention mechanism for the NoPE components, where
WUK

RoPE ∈ Rhd×gd and WUK
NoPE ∈ Rhd×(g−1)d are two parts of WUK hat participate in and do not

participate in the RoPE computation, respectively. The original sequence of operations for these
components can be expressed as WUKV WDKV xt ∈ R2hd, in which the first hd elements correspond
to the keys and the following hd elements correspond to the values.

To introduce a low-rank bottleneck, we modify both WDKV and WUKV using the PCA projection
matrix RKV .

• The initial projection matrix WDKV is transformed into WDKV ′ ∈ Rrkv×D:

WDKV ′
= RT

KV W
DKV (35)

This new matrix WDKV ′ takes the original input xt and projects it into a compressed
rkv-dimensional latent space, which is the actual content stored in the KV cache for the
NoPE components.

• The subsequent projection matrix WUKV is transformed into WUKV ′ ∈ R2hd×rkv :

WUKV ′
= WUKV RKV (36)

This new matrix WUKV ′ now takes the compressed latent representation as input and
produces the final representations for the NoPE components that are used in the attention
calculation. As we can see, WUKV ′ is actually the concatenated form of WUK and WUV

in MLA:

WUKV ′
=

(
WUK

WUV

)
(37)

This joint decomposition allows for a more holistic compression by identifying shared latent structures
between NoPE keys and values, guided by the balanced PCA.

24

Table 2: Composition of the training dataset.
Dataset Sampling Weight
fineweb-edu-dedup 0.70
cosmopedia-v2 0.15
python-edu 0.06
open-web-math 0.08
stackoverflow 0.01

E Experimental Settings of Fine-tuning

Datasets Following the experimental setups of MHA2MLA, we fine-tune our models using the
prtraining corpus from SmolLM Ben Allal et al. [2024]. The dataset comprises FineWeb-Edu-Dedup
Lozhkov et al. [2024a], Cosmopedia-v2 — a synthetic dataset generated by Mixtral Wu et al. [2024],
Python-Edu from StarCoder Lozhkov et al. [2024b], Open-Web-Math Paster et al. [2023], and data
from StackOverflow Stack Overflow [2025]. To ensure a fair comparison with the MHA2MLA
baseline, we constructed our training dataset using the same data composition strategy. Specifically,
we replicate the dataset mixing ratios used in the MHA2MLA setup to maintain experimental
consistency, which is shown in Table 2.

Hyperparameters The fine-tuning hyperparameters for models of all sizes are listed in Table 3. In
the table, entries with a slash (/) indicate a two-step training process.

Table 3: Training details across different models.
SmolLM 1B7 LLaMA2 7B

-68.75% -87.50% -68.75% -87.50% -92.97%
Batch size 64 64 64 64 / 64 256 / 64
Learning rate 1e-4 1e-4 2e-5 2e-5 / 2e-5 1e-4 / 2e-5
Tokens 300M 1B 500M 2B / 1B 5B / 1B
Warmup ratio 0.03 0.08 0 0 / 0.03 0 / 0.03
lr scheduler constant constant constant constant / cosine constant / cosine
Sequence length 2048 2048 4096 4096 4096

F Detail Information for vLLM Benchmark

In Section 5.4, we demonstrated the speedup achieved by TransMLA—which compresses 92.97%
of the KV cache—compared to the original LLaMA-2-7B model. This section provides a detailed
analysis of throughput across various hardware configurations.

To account for the effects of both the prefilling and decoding stages, we adopt a setting where the
input and output lengths are equal. For instance, with a total context length of 1k, we set the input
length to 512 tokens and the output length to 512 tokens. Most experiments are conducted using
100 requests to compute the average throughput. However, for shorter context lengths such as 1k,
inference is extremely fast, leading to some timing fluctuations. To mitigate this, we increase the
number of requests to 1000 for more stable measurements.

While the original LLaMA-2-7B model supports a maximum context length of 4096 tokens, we
extend this limit to 32k tokens in our evaluation. Detailed throughput results are presented in Table 4.

On a GPU with 165.2 TFLOPS of compute and 24GB of memory, the LLaMA-2-7B model runs out
of memory when the context length reaches 16k tokens. In contrast, TransMLA sustains a throughput
of 414.41 tokens per second under the same conditions. On a more powerful GPU with 320 TFLOPS
and 64GB of memory, we employ a development version of the vLLM framework. We anticipate that
the throughput of TransMLA will improve further with the release of future optimized versions of the
framework tailored for this hardware.

25

Table 4: Throughput comparison between LLaMA-2-7b and TransMLA at varying input lengths and
number of requests.

Context Length Requests Model Throughput(output tokens/s)
165.2 TF|24GB 312 TF|40GB 320 TF|64GB

1K 1000 LLaMA-2-7b 653.81 1579.26 1249.13
TransMLA 3043.65 4062.43 1798.17

2K 100 LLaMA-2-7b 352.85 850.14 789.31
TransMLA 2241.87 2577.01 1080.73

4K 100 LLaMA-2-7b 173.09 441.37 442.63
TransMLA 1318.78 1926.15 1021.03

8K 100 LLaMA-2-7b 85.80 218.51 216.66
TransMLA 832.69 1118.18 870.15

16K 100 LLaMA-2-7b OOM 110.58 112.13
TransMLA 414.41 601.36 483.22

32K 100 LLaMA-2-7b OOM 38.32 55.69
TransMLA OOM 243.81 278.09

G Case Study

To provide an intuitive understanding of TransMLA’s impact on model performance, this section
presents several examples from vLLM’s docs. We compare the outputs of three model variants: (1) a
model with 92.97% of its KV cache compressed without any fine-tuning; (2) a model pretrained on
6B tokens, as detailed in Table 1; and (3) a model fine-tuned for one epoch on the SmolTalk dataset,
following the setup described in Allal et al. [2025a]. The results are summarized in Table 5.

As shown in Table 5, even without any additional training, the compressed model is still able to
produce coherent and meaningful responses. This demonstrates the effectiveness of techniques such
as RoRoPE, FreqFold, and BKV-PCA in significantly mitigating performance degradation. Moreover,
with a modest amount of pretraining or supervised fine-tuning (SFT), the model’s performance
improves substantially. These findings highlight TransMLA’s potential as a general framework for
converting various GQA models into MLA models, with promising prospects for aligning with the
performance of advanced systems like DeepSeek R1.

26

Table 5: Examples from different model configurations. Red indicates input; black indicates output.
“w/o Training” denotes the TransMLA-compressed model (92.97% KV cache) without further
training. “Pre-Training” and “Fine-Tuning” show outputs after pretraining on a 6B-token corpus and
SFT on SmolTalk Allal et al. [2025b], respectively.

Model Prompt & Generated Text

w/o Training Hello, my name is Katiu, my father’s dog, the pet of the 3600 year-old tribe,
Kint. The Kangs were part of a race of reptiles. A small handful

Pre-Training Hello, my name is Sasha and I am in third grade at Meadows. You may be
wondering what this article is about. Well, I have been doing a lot of research on
the water cycle and decided to write about it.

Fine-Tuning Hello, my name is Emily, and I’m a 20-year-old college student. My hobbies
include painting, writing, and photography. I also enjoy playing the guitar.

w/o Training The president of the United States is elected by the legislature. The legislature
controls the national armed forces, but only provides the funds to establishing a
national guard.

Pre-Training The president of the United States is elected to a four-year term by the people of
each state in a general election held every four years on the Tuesday following
the first Monday in November.

Fine-Tuning The president of the United States is not a position to be taken lightly. This
person is the chief executive of the United States of America, and has immense
power and influence.

w/o Training The capital of France is Paris. Its geographical position in the Iberian Plain of
France, Spain, Spain, and Morocco are the four largest cities. This region is
located in Asia, Spain and Morocco.

Pre-Training The capital of France is a major business city and it is a favorite destination for
businesses from all over the world. It has a strategic location in the heart of the
European Union, which makes it one of the most popular cities in Europe.

Fine-Tuning The capital of France is Paris, and it is one of the most popular tourist
destinations in the world. It is a city that offers something for everyone, from art
and history to food and fashion.

w/o Training The future of AI is in serious risk to create a major breakthrough in this
emerging phenomenon in the history of artificial intelligence.

Pre-Training The future of AI is looking bright. With advancements in technology and the
increasing availability of data, AI is expected to become more intelligent and
capable of performing even more complex tasks.

Fine-Tuning The future of AI is The future of AI is more nuanced and complex than we might
think. Here are some potential developments that could shape the future of AI.

27

	Introduction
	Related Work
	Preliminary
	Rotary Position Embedding (RoPE)
	Group Query Attention
	Multi-Head Latent Attention

	TransMLA
	Merging All Key Heads as One
	Rotating Queries and Keys to Minimize Transformation Loss Towards Decoupled RoPE
	A Balanced Approach to Joint Low-Rank Approximation of NoPE Keys and Values

	Experiment
	Main Experiment
	Key Norm Analysis Reveals the Impact of RoRoPE and FreqFold
	Key-Value Norm Disparity Motivates KV Balancing
	Hardware-Agnostic Inference Speedup with TransMLA

	Conclusion, Limitation and Future Work
	Enhanced Expressive Power of MLA with Decoupled RoPE
	Introduction
	Proof of Proposition 1
	GQA MLAFactorized
	MLAFactorized MQA
	Strict Inequalities: GQA < MLAFactorized < MQA

	Expressiveness of MLA with Decoupled RoPE

	Proof of RoPE Inner Product Invariance under Orthogonal Transformation
	FreqFold: Detailed Mechanism, Example, and PCA Efficiency
	Detailed Explanation of FreqFold and RoRoPE's PCA
	Illustrative Example of FreqFold

	Formalizing the Benefit of FreqFold in PCA
	Proof of Proposition 2
	Discussion on the Trade-off in FreqFold

	Balancing Key-Value Norms and Low-Rank Approximation
	KV Balancing: Purpose and Formulation
	Joint Low-Rank Approximation of NoPE Keys and Values using PCA

	Experimental Settings of Fine-tuning
	Detail Information for vLLM Benchmark
	Case Study

