
Metacognitive Reuse: Turning Recurring LLM
Reasoning Into Concise Behaviors
Aniket Didolkar1,2, Nicolas Ballas1, Sanjeev Arora1,3,†, Anirudh Goyal1,†

1Meta, 2Mila-Quebec AI Institute, University of Montreal, 3Princeton University
∗Work done at Meta, †Joint last author

Large language models (LLMs) now solve multi-step problems by emitting extended chains of thought.
During the process, they often re-derive the same intermediate steps across problems, inflating token
usage and latency. This saturation of the context window leaves less capacity for exploration. We study
a simple mechanism that converts recurring reasoning fragments into concise, reusable “behaviors”
(name + instruction) via the model’s own metacognitive analysis of prior traces. These behaviors
are stored in a “behavior handbook” which supplies them to the model in-context at inference or
distills them into parameters via supervised fine-tuning. This approach achieves improved test-time
reasoning across three different settings - 1) Behavior-conditioned inference: Providing the LLM
relevant behaviors in-context during reasoning reduces number of reasoning tokens by up to 46%
while matching or improving baseline accuracy; 2) Behavior-guided self-improvement: Without any
parameter updates, the model improves its own future reasoning by leveraging behaviors from its own
past problem solving attempts. This yields up to 10% higher accuracy than a naive critique-and-revise
baseline; and 3) Behavior-conditioned SFT: SFT on behavior-conditioned reasoning traces is more
effective at converting non-reasoning models into reasoning models as compared to vanilla SFT.
Together, these results indicate that turning slow derivations into fast procedural hints enables LLMs
to remember how to reason, not just what to conclude.

Date: September 17, 2025
Correspondence: adidolkar123@gmail.com, agi@meta.com

1 Introduction

LLMs have made rapid progress on mathematics, coding and other multi-step tasks by generating long,
deliberative chains-of-thought (Wei et al., 2022; Guo et al., 2025; Shao et al., 2024; OpenAI, 2024; Muennighoff
et al., 2025; Ye et al., 2025; Gao et al., 2024; Lambert et al., 2024; Team et al., 2025). Yet, this capability
exposes a structural inefficiency: each new problem triggers reconstruction of ubiquitous sub-procedures (e.g.,
finite-series sums, case splits, unit conversions), inflating token usage and latency. For instance, suppose the
LLM derives the finite geometric series formula while solving one problem. Can it avoid re-deriving from
scratch when similar reasoning is needed for another problem? Current inference loops lack a mechanism to
promote frequently rediscovered patterns into a compact, retrievable form.

We introduce a metacognitive pathway that extracts and reuses such patterns. Given a problem, the model first
solves it, then reflects on its trace to identify generalizable steps, and finally emits a set of behaviors—short,
actionable instructions with canonical names. These behaviors populate a searchable handbook (a procedural
memory) that can be provided in-context at test time or internalized through supervised fine-tuning. This
provides a framework for turning verbose derivations into quick reflexes.

Unlike typical memory/Retrieval-Augmented Generation (RAG) systems that store declarative facts, the
handbook targets procedural knowledge (Willingham et al., 1989) about how to think. This procedural
memory contrasts sharply with most existing “memory” add-ons for LLMs, including RAG, which target
declarative knowledge for tasks such as factual question-answering (Borgeaud et al., 2022; Lewis et al., 2020).
Instead of being assembled from curated documents or knowledge graphs—rather, it is generated by the
model itself. It emerges from the model’s own metacognitive cycle: critiquing its own chain-of-thought and

1

ar
X

iv
:2

50
9.

13
23

7v
1

 [
cs

.L
G

]
 1

6
Se

p
20

25

mailto:adidolkar123@gmail.com
mailto:agi@meta.com
https://arxiv.org/abs/2509.13237v1

S-3

Behavior-conditioned
InferenceBehavior Handbook

behavior_angle_sum

The sum of the interior angles of a triangle is 180 degrees. Use
this property to find the missing angle when two angles are
known.

behavior_lagrange_multipliers_tangency

Use Lagrange multipliers to find points of tangency between two
surfaces by setting their gradients proportional.

..

SolutionQuestion

Question

LLM ASolution
Prompt

Solution

LLM AReflection
Prompt

Solution

Behavior
Prompt

Reflection

Reflection

Question

LLM A

Behaviors

Behavior Curation Pipeline

Q

LLM C

S

✅

Behavior-guided Self-improvement

Q LLM A S Q LLM C S

Q-1 Q-2 Q-3 Q-4

LLM B

S-1 S-2 S-3 S-4

SFT Data

Q-1 S-1 Q-2 S-2

Q-3 Q-4 S-4

SFT Data

Training

LLM C

Behavior-
conditioned SFT

S-3

Figure 1 Behavior Curation Pipeline (left): All the 3 stages of behavior curation pipeline are shown. The stages are
described in detail in Section 3 with detailed prompts for each stage shown in Figure 2. LLM A refers to the
Metacognitive Strategist. Reasoning with behaviors (right): This part showcases various ways in which behaviors are
utilized for LLM reasoning. For behavior-conditioned inference and behavior-guided self-improvement, behaviors
retrieved from the behavior handbook, are provided in-context to the Student model (LLM C) during inference. For
behavior-conditioned SFT, a training dataset is created using a Teacher LLM (LLM B) via behavior-conditioned
inference and then a Student LLM is trained on the resulting (question, response) pairs. After training, during
inference, the Student LLM is queried with the given question without any behaviors in-context.

abstracting repeated reasoning patterns into behaviors.

We evaluate three instantiations of the proposed framework. (i) Behavior-conditioned inference: Providing
behaviors obtained by solving questions in-context results in reasoning chains that utilize up to 46% fewer
tokens while improving or maintaining strong performance across MATH and AIME benchmarks (ii) Behavior-
guided self-improvement: While solving a problem, providing the model access to behaviors extracted by
itself from its own past attempts for that question improves accuracy by up to 10% compared to naive
self-improvement baseline. (iii) Behavior-conditioned SFT: training on reasoning traces generated via behavior-
conditioned inference yields models that are both more accurate and more concise than models trained on
ordinary traces, especially when turning non-reasoning models into reasoning models.

Contributions.

1. We formalize behaviors as named, reusable reasoning instructions discovered by metacognitive reflection
over solution traces.

2. We introduce a three-step approach to employ an LLM to extract behaviors from its own reasoning
traces (Section 3).

3. We develop three settings for utilizing these behaviors: behavior-conditioned inference, behavior-guided
self-improvement, and behavior-conditioned SFT. (Section 4)

4. We provide empirical evidence of the effectiveness of our behavior-based approach across each of the
three settings, evaluated on challenging mathematical benchmarks such as MATH (Hendrycks et al.,
2021) and AIME–24/25 (MAA, 2024, 2025) (Section 5).

5. We discuss some limitations and challenges of the proposed framework—e.g., lack of dynamic behavior
retrieval during long solutions, usage of behaviors beyond math, constructing large scale behavior
handbooks across various domains, etc.

2

By converting frequently rediscovered steps into compact procedures, behavior handbooks encourage LLMs to
remember how to think. This simple addition to the reasoning stack improves token efficiency and suggests a
path toward models that accumulate procedural knowledge over time.

1.1 Paper Outline

The paper starts with describing the pipeline for curating the behaviors (Section 3) followed by various
ways in which behaviors are utilized for improved reasoning (Section 4). The experiment section describes
the corresponding experiment results. Section 5.1 presents results for behavior-conditioned inference on
the MATH (Hendrycks et al., 2021) and the AIME datasets (MAA, 2024, 2025) showing that the proposed
approach exhibits similar or improved performance compared to normal inference while reducing token usage
by up to 46%. Section 5.2 presents the self-improvement experiment where the behavior-guided approach
uses behaviors as lessons for scalable self-improvement achieving up to 10% higher accuracy as compared to
the baseline self-improvement approach at the highest considered token budget of 16,384. Finally, the SFT
experiments (Section 5.3) show that using behavior-conditioned inference to generate reasoning traces for
SFT results in stronger reasoning models as compared to performing SFT with vanilla reasoning traces.

2 RelatedWork

Efficient Reasoning with LLMs Reinforcement-tuned, long-form chain-of-thought (CoT) prompting
has enabled recent LLMs to tackle highly complex problems in mathematics, logic, and code (OpenAI, 2024;
Guo et al., 2025; Shao et al., 2024; Gao et al., 2024; Lambert et al., 2024; Team et al., 2025; Zeng et al.,
2025a; Song et al., 2025; Muennighoff et al., 2025; Ye et al., 2025). Although CoT lets a model “think out
loud” for seconds or minutes, a growing literature seeks to shorten those traces while preserving accuracy.
Skeleton-of-Thought first drafts an outline and then expands each bullet in parallel (Ning et al., 2023);
TokenSkip trains models to omit redundant tokens altogether (Xia et al., 2025); Dynasor inserts early-exit
probes that halt generation once successive probes agree on the answer (Fu et al., 2024); and MinD constrains
the model to concise, single-trajectory blocks across multiple turns (Zeng et al., 2025b). The proposed
approach shares the efficiency goal but diverges in two ways: (i) we do not explicitly train the model to be
terse—efficiency emerges after the model abstracts recurring reasoning fragments into reusable behaviors;
and (ii) these behaviors also improve solution quality, as shown in the SFT experiment (Section 5.3), where
training on behavior-conditioned traces outperforms training on long-form extended chain-of-thought traces.

Metacognitive abilities of LLMs Metacognition refers to humans’ “thinking about thinking” (Flavell,
1979). Didolkar et al. (2024) suggested that one LLM analog of metacognition is the ability to extract reusable
“skills” from the CoT of LLMs, and showed that frontier LLMs can extract meaningful skill catalogs from
task datasets. Such LLM-extracted skill catalogs were used to create more difficult math questions in Shah
et al. (2025), by requiring questions to involve skill compositions. Kaur et al. (2025) follow a similar approach
for instruction-following skills. He et al. (2025) use skill categories to study in-context learning in smaller
language models. The novelty of our work is to apply metacognitive thinking to help reasoning models with
their longer and complicated reasoning traces.

Memory in LLMs Current memory implementations for LLM mainly rely on an external store of factual
knowledge (such as Wikipedia) that the model can search (Borgeaud et al., 2022; Lewis et al., 2020; Guu
et al., 2020; Shi et al., 2023; He et al., 2021). Retrieval-augmented generation pulls passages from this factual
memory at inference time and conditions the decoder on the evidence to answer knowledge-intensive queries.
More recently, retrieval has been woven directly into multi-step reasoning, with methods like ReAct and
IR-CoT interleaving “think→retrieve→think” loops to reduce hallucinations (Yao et al., 2023; Trivedi et al.,
2022). These implementations of memory mainly store declarative knowledge which corresponds to what is
true, not how to think. Procedural knowledge—skills and routines acquired through repetition—remains
largely unexplored. Our proposed behavior handbook is one instantiation of such procedural memory for
LLMs: it captures how-to strategies distilled from repeated reasoning patterns and stores them for future
reuse.

3

Please reason step by step and put the final
answer in

Problem: <problem>

Solution Prompt

<reflection prompt>

<reflection>

Now, given this reflection generate a list of
behaviors and corresponding instructions/
explanations in json format. Each behavior should
be a single line, and the format is
"behavior_[name]: [description]". The list should
be in json format, and each behavior should be a
key-value pair, where the key is the behavior name
and the value is the description.

Behavior Prompt

Here is the definition of a behavior:
•A behavior is a note or skill to keep in mind while solving math problems.
•It can be a strategy, a trick, or a technique.
•It can also be a general rule or a common sense principle.
•A behavior is not a solution to the problem, but it can be used to solve the problem.

For example - if the problem is "Find the area of a circle with radius 4", one useful behaviour could be
{“behavior_area_of_circle”: area of a cirle is pi*r^2}.

Given a problem and the corresponding solution, reflect and critique the solutions along the following dimensions:

1. Correctness Analysis: Is the answer mathematically correct? Are there calculation errors? Is the reasoning logically
sound? Are all steps properly justified? What specific mistakes were made?

2. Missing Behaviors Analysis: What behaviors should have been used but weren't? Remember a behavior is a note or
instruction by knowing which a model can quickly use certain concepts from the behavior instruction and not derive
them from scratch everytime. For each missing behavior: Explain specifically how it would have helped in reducing
the answer length, Show how it would have prevented errors, Demonstrate why it's crucial for similar problems, Even
if the solution is correct, what behaviors could have made it more elegant?

3. New Behavior Suggestions: Suggest specific new behaviors that will help with similar problems. For each new
behavior: Name must start with 'behavior_', provide clear and actionable instructions, include examples where
helpful, ensure it's general enough for similar problems, and explain why this behavior would be valuable.

Reflection Prompt

Figure 2 Prompts used for extracting behaviors from solutions are listed in this Figure. Solution Prompt is used to map
the questions to solutions containing reasoning traces. Next, the Reflection Prompt is employed to generate a reflection
for the solution followed by using the Behavior Prompt to generate the behaviors.

3 Behaviors fromReasoning traces

Reasoning LLMs emit a long chain-of-thought (CoT) which we will also refer to as a reasoning trace. We
define a behavior as a reusable skill—a concise piece of knowledge—distilled from an LLM’s chain of thought.
Such behaviors can be invoked across tasks to make inference-time reasoning both faster and more accurate.
Each behavior is represented as a (name, instruction) pair. For example:

systematic_counting → Systematically count possibilities by examining each digit’s contribution
without overlap; this prevents missed cases and double-counts.

The remainder of this section describes the process of deriving behaviors from LLM-generated reasoning
traces.

Figure 1 depicts the entire pipeline. The framework employs LLMs in 3 different roles - 1) A Metacognitive
Strategist (LLM A) which extracts behaviors from its own reasoning traces; 2) A Teacher (LLM B) which
generates data for SFT training; and 3) A Student (LLM C) whose reasoning is aided by behaviors either via
behavior-conditioned inference or behavior-conditioned SFT. We dive deeper into each of these roles in the
following sections. First, we describe the working of the Metacognitive Strategist.

Extracting Behaviors To extract behaviors, the Metacognitive Strategist produces a solution for a
given question which consists of the reasoning trace + the final answer. The prompt for this interaction
is shown in Figure 2 (Solution Prompt). The question–solution pair is then fed to the Metacognitive
Strategist again to generate a reflection which evaluates whether the reasoning is logically sound, the answer
correct, and whether any new, reusable behaviors can be distilled to streamline future problem solving (See
Reflection Prompt in Figure 2). Finally, via another query the Metacognitive Strategist converts the
question, solution, and reflection into a set of (name, instruction) behavior entries, which are appended
to an ever-growing behavior handbook (See Behavior Prompt in Figure 2). The behavior handbook panel
in Figure 1 shows two example behaviors derived from the MATH (Hendrycks et al., 2021) and AIME–24
datasets (MAA, 2024) datasets.

The DeepSeek-R1-Distill-Llama-70B (R1-Llama-70B) (Guo et al., 2025) is used as the Metacognitive
Strategist.

4

4 Behavior-Guided Reasoning

This section discusses various ways in which the behavior handbook is utilized for scalable and efficient
reasoning.

4.1 Behavior-conditioned inference

One straightforward way to utilize the behaviors is providing a Student LLM access to those behaviors
in-context during reasoning as shown in Figure 1. We term this as behavior-conditioned inference (BCI).
Given a question Qi, the proposed approach first retrieves relevant behaviors Bi from the behavior handbook.
The behaviors, their corresponding instruction, and the question are then fed into the LLM to produce a
solution-

(Bi, Qi) → Si (1)

A behavior is a note or skill to keep in mind while solving math problems. It can be a strategy,
a trick, or a technique. It can also be a general rule or a common sense principle. The
behavior is not a solution to the problem, but it can be used to solve the problem.

Here is a list of behaviors:

{behavior_1} : <instruction_1>
{behavior_2}: <instruction_2>
{behavior_3}: <instruction_3>
 ….

Now, solve the following math problem efficiently and clearly. You can use any of the
behaviors above to solve the problem.

In your reasoning, when you use a behavior explicitly refer to the behaviors when you use
them.

Please reason step by step and put the final answer in \\boxed{{}}

Behavior-Conditioned Inference Prompt

Figure 3 Prompt used for behavior-conditioned inference
(BCI).

The exact prompt used for BCI is mentioned in Fig-
ure 3. The form of the retrieval function, which re-
trieves relevant behaviors from the behavior hand-
book for a given question, depends on the ex-
act use-case. For instance, in the MATH dataset
(Hendrycks et al., 2021), the retrieval function is
based on topic-matching - for a question from a
given topic, behaviors from that topic are retrieved.
This is possible for the MATH dataset since all
training and test set questions are annotated with
one of 7 topics. Therefore, behaviors in the behav-
ior handbook can be categorized using the topics of
the questions that they were obtained from. Such
retrieval is not possible for other datasets like .
AIME–24, 25 (MAA, 2024, 2025). In that case, embedding-based retrieval is used for retrieving relevant
behaviors. For a given question, the top-K behaviors ranked by cosine similarity in embedding space are
selected. More details of this retrieval function are provided in Section 5.1. More information regarding the
form of the retrieval functions used for each experiment is deferred to the Section 5 and described along with
the corresponding experiment.

4.2 Behavior-guided self-improvement

Self-improvement is a given model’s ability to improve its own reasoning. To achieve this, behaviors curated
by a model from the reasoning traces of a particular question are then fed back into the model in-context to
serve as lessons or hints to solve the same question or new questions. The implementation closely follows that
of BCI and uses the same prompt. This process is depicted in Figure 3. The Student LLM is the same as the
Metacognitive Strategist.

4.3 Behavior-conditioned supervised fine-tuning

Behavior-conditioned inference still incurs a retrieval step and extra prompt tokens at test time to remind the
model which behaviors to use. We eliminate this overhead by internalising the behaviors through fine-tuning
the given model on data generated via BCI. We term this as Behavior-conditioned supervised fine-tuning
(BC-SFT). The Metacognitive Strategist generates the behaviors, the Teacher generates data using BCI,
and the Student is fine-tuned on that data. The procedure is as follows:

1. The Metacognitive Strategist extracts behaviors for each question using the pipeline in Section 3
followed by the Teacher which generates a behavior-conditioned response for each question using BCI.

5

2. The Student model is fine-tuned on the resulting (question, behavior-conditioned response) pairs.

This pipeline is depicted in Figure 1 and more details are elaborated in Section 5.3. The Student model
no longer needs behavior prompts; it spontaneously invokes the learned behaviors. This distillation setup
converts the teacher’s deliberate, behavior-annotated reasoning into a student’s fast, intuitive, low-token
responses. Such a setup also allows us to evaluate the effectiveness of behavior-conditioned reasoning to equip
a non-reasoning model with reasoning capabilities.

1500 2000 2500
Average Number of Tokens

65

70

75

80

85

90

Ac
cu

ra
cy

 (
%

)

(a) Behavior-conditioned Inference (BCI) on
R1-Llama-70B

2000 3000 4000
Average Number of Tokens

40

50

60

70

80

90

Ac
cu

ra
cy

 (
%

)

(b) Behavior-conditioned Inference (BCI) on
Qwen3-32B

Original Model Original Model + BCI 2048 tokens 4096 tokens 8192 tokens 16384 tokens

Figure 4 Behavior-conditioned Inference (BCI) for MATH. Using behaviors from R1-Llama-70B, BCI is applied on two
models - R1-Llama-70B and Qwen3-32B- while evaluating on the MATH-500 dataset (Hendrycks et al., 2021). The
x-axis shows the average number of tokens produced per solution, the y-axis depicts the accuracy, and each point on
the line corresponds to a particular hard token budget which is enforced during inference as shown in the legend. BCI
achieves superior token efficiency producing answers with similar or improved accuracy while utilizing far fewer tokens
than the base models.

5 Experimental Results

This section presents experimental results for each use-case described in section 4. Unless otherwise specified,
the decoding temperature is set to 0.6 and top–p is set to 0.95.

5.1 Behavior-conditioned Inference for efficientMathematical Reasoning

For the first use-case, BCI is applied to the MATH (Hendrycks et al., 2021) and AIME–24/25 (MAA, 2024,
2025) datasets. Two open-source reasoning LLMs - DeepSeek-R1-Distill-Llama-70B (R1-Llama-70B) (Guo
et al., 2025) and Qwen3-32B (Qwen3-32B) (Bai et al., 2023) - are used as Student candidates.

R1-Llama-70B is employed as the Metacognitive Strategist. More dataset-specific details are provided in
the following paragraphs.

MATH Dataset The behavior handbook is curated using a random sample of 1k questions from the
MATH training set. The reasoning traces, reflections, and the behaviors are generated with a token budget
of 8,192. All reasoning traces are used for curating the behavior handbook regardless of correctness. Here is

6

Two fair, 6-sided dice are thrown. What
is the probability that the product of the
two numbers is a multiple of 5? Express
your answer as a common fraction.

Remmy wants to divide 10 by 2
3 , but he

cannot remember how to do that. By
what number should he multiply 10 to
get the answer?

Hillary has eleven coins, all dimes and
nickels. In total, the coins are worth 75
cents. How many nickels does she have?

Alright, so I need to find the probability
that the product of two fair 6-sided dice
is a multiple of 5. Hmm, okay.
...
...
That would be 6 (for the first die)
multiplied by 6 (for the second die),
which gives us 36 total possible out-
comes. I think this is an application of
the behavior_total_outcomes behavior.
...
...
There are two scenarios where the prod-
uct is a multiple of 5:

1. The first die is a 5, regardless of
what the second die shows.

2. The second die is a 5, regardless
of what the first die shows.

Wait a second — if I just add these two
scenarios together, I might be double-
counting the case where both dice are
5. So, I need to adjust for that overlap
to avoid counting it twice.
This sounds like the behavior_inclusion_-
exclusion principle, where I add the prob-
abilities of each event and then subtract
the probability of their intersection....

Alright, let me try to figure out how to
solve this problem. So, Remmy wants to
divide 10 by 2/3, but he’s forgotten how
to do that
...
...
As per the behavior behavior_reciprocal,
I know that dividing by a fraction is the
same as multiplying by its reciprocal.
...
...
So, my initial answer of 15 seems correct.
Another way to think about it is
using the behavior behavior_estimate_-
reasonableness. If I estimate, dividing 10
by a number less than 1 should give me
a number larger than 10. Since 2/3 is
about 0.666, dividing 10 by 0.666 should
be around 15, which matches my previous
result....

Alright, so Hillary has eleven coins, and
they’re all dimes and nickels. The total
value is 75 cents. I need to figure out how
many nickels she has. Let me break this
down step by step.
First, I’ll use the behavior behavior_-
translate_verbal_to_equation to convert
the problem into mathematical equations.
Let’s let d represent the number of dimes
and n represent the number of nickels.
I know two things: the total number of
coins and the total value. So, I can write
two equations. The first equation is about
the number of coins:

d + n = 11

This is because she has eleven coins in
total, and they’re all dimes and nickels.
The second equation is about the total
value. Since each dime is worth 10 cents
and each nickel is worth 5 cents, the total
value equation is:

10d + 5n = 75

....

Table 1 Behavior-conditioned Inference examples This table illustrates how R1-Llama-70B uses behaviors to ease problem
solving. The behaviors used are highlighted in blue.

the obtained distribution of behaviors per MATH subject - Algebra: 113, Prealgebra: 144, Counting: 128,
Intermediate Algebra: 107, Geometry: 95, Number Theory: 107, and Precalculus: 91. Appendix Table 2
presents a few example behaviors for each subject.

Baseline The baseline in this case runs normal inference on the same LLM by simply prompting it with
the given problem and asking it to reason and produce the final answer in boxed format.

During inference, relevant behaviors are retrieved from the behavior handbook for a given question based on
topic-matching. The evaluation results on the MATH-500 set are presented in Figure 4. The mean accuracy
across 5 seeds is reported in the plot. The proposed BCI approach, achieves similar or improved accuracy
while utilizing fewer tokens than the original model. Secondly, the performance still scales with increasing
token-budget thus the proposed approach does not affect the model’s existing capabilities in unwanted ways.

A few example reasoning traces output by the R1-Llama-70B during BCI are presented in Table 1. Only those
parts of the trace which utilize behaviors are shown. Some behaviors encode core mathematical concepts
such as behavior_total_outcomes and behavior_inclusion_exclusion while others encode more general
problem solving strategies such as behavior_estimate_reasonableness and behavior_translate_verbal_-
to_equation.

AIME Datasets Next, BCI is evaluated on the AIME–24 (MAA, 2024) and AIME–25 (MAA, 2025)
datasets. The behavior handbook for these datasets is created using the past versions of the AIME exams
- specifically the AIME–22 and AIME–23 sets which have 30 questions each. R1-Llama-70B is again used
as the Metacognitive Strategist. Behaviors are generated for each of the 60 questions while generating
16 reasoning traces per question at a token budget of 16,384. The reflections and the behaviors are also
generated at a token budget of 16,384 tokens. The final behavior handbook consists of 1457 behaviors from
60 questions. Some examples of these behaviors are presented in the Appendix table 3.

During inference, embedding based retrieval is used to fetch relevant behaviors per question. The BGE-

7

M3 sentence transformer model (Chen et al., 2024) is used to encode both the query question text and
all 1457 behaviors (and their corresponding instructions) from the AIME–22/23 corpus into dense vector
representations. A FAISS index (Douze et al., 2024) is constructed over the behavior embeddings from the
behavior handbook from which the top-k behaviors are retrieved for each question. In this case, k is set to
40. Critically, the FAISS-based retrieval layer is scalable: in principle a very large, continually expanding,
cross-domain library of behaviors can be maintained and only the most relevant behaviors to a given query
can be retrieved from this library with manageable latency and memory cost.

The results for this experiment are presented in Figures 5 and 6. The accuracy is averaged across 80 runs
per question and the pass@16 averaged over 5 sets of 16 responses each. BCI leads to more token efficient
solutions achieving improved or competitive performance while using fewer tokens.

2000 4000 6000 8000
Average Number of Tokens

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (
%

)

(a) R1-Llama-70B

2000 4000 6000 8000
Average Number of Tokens

30

40

50

60

70

80

Pa
ss

@
16

 (
%

)

(b) R1-Llama-70B

2000 4000 6000 8000 10000
Average Number of Tokens

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (
%

)
(c) Qwen3-32B

2000 4000 6000 8000 10000
Average Number of Tokens

20

30

40

50

60

70

80

90

Pa
ss

@
16

 (
%

)

(d) Qwen3-32B

Original Model BCI 2048 tokens 4096 tokens 8192 tokens 16384 tokens

Figure 5 Behavior-conditioned Inference (BCI) for AIME–24. This figure presents results for the AIME–24 dataset. The
accuracy is averaged across 80 runs. Pass@16 is averaged across 5 different sets of 16 runs each. The x-axis denotes
the average number of tokens generated across all solutions. Each point on the line indicates a given token-budget
which is enforced during generation as shown in the legend. The proposed approach improves the token efficiency of
the generated solutions achieving superior or competitive performance while producing significantly lesser number of
tokens.

Efficiency Considerations The proposed BCI approach enables models to produce fewer output tokens
without sacrificing performance and scalability. This reduction in generation length has the potential to
substantially lower the cost of inference compared to conventional prompting strategies. While the proposed
method involves a larger number of input tokens due to the inclusion of retrieved behaviors, this overhead is
mitigated by two key factors. First, the input representations of behaviors can be pre-computed and reused
across different queries, amortizing the cost over multiple inferences. Second, there is no autoregressive
generation required on the input side, which makes processing these tokens much faster. Moreover, in many
proprietary model APIs, input tokens are billed at a lower rate than output tokens, making the proposed
approach even more attractive from a cost-efficiency standpoint.

5.2 Self-Improvement using Behaviors

This section evaluates a model’s self-improvement capabilities by using it as the Metacognitive Strategist
and the Student at the same time. R1-Llama-70B is used for both the roles.

Critique-and-Revise Baseline The baseline in this experiment uses an LLM for self-improvement by
directly prompting it to critique-and-revise its own past reasoning trace. Concretely, given a question Q, the
model first produces an initial reasoning trace R1 (Q → R1). This reasoning trace along with the original
question is then fed back into the model prompting it to generate an improved trace R2 that corrects errors
or extends incomplete reasoning ((Q,R1) → R2). This baseline is called the critique-and-revise baseline. In
this experiment, the token budget for R1 is set to 2,048 and that of R2 is varied from 2,048 to 16,384.

Behavior-guided variant In the behavior-guided variant, behaviors are curated from the original reasoning
traces R1 which are generated at a token budget of 2,048. Following this, each step in the behavior curation

8

2000 4000 6000 8000 10000
Average Number of Tokens

10

20

30

40

50
Ac

cu
ra

cy
 (

%
)

(a) R1-Llama-70B

2000 4000 6000 8000 10000
Average Number of Tokens

30

40

50

60

70

80

Pa
ss

@
16

 (
%

)

(b) R1-Llama-70B

2500 5000 7500 10000 12500
Average Number of Tokens

10

20

30

40

50

60

Ac
cu

ra
cy

 (
%

)

(c) Qwen3-32B

2500 5000 7500 10000 12500
Average Number of Tokens

20

30

40

50

60

70

80

90

Pa
ss

@
16

 (
%

)

(d) Qwen3-32B

Original Model BCI 2048 tokens 4096 tokens 8192 tokens 16384 tokens

Figure 6 Behavior-conditioned Inference (BCI) for AIME–25. This figure presents results for the AIME–25 dataset using
behavior list extracted using AIME–22 and 23. The accuracy is averaged across 80 runs. Pass@16 is averaged across
5 different sets of 16 runs each. The x-axis denotes the average number of tokens generated across all solutions.
Each point on the line indicates a given token-budget which is enforced during generation. The proposed approach
improves the token efficiency of the generated solutions achieving superior or competitive performance while producing
significantly lesser number of tokens.

pipeline is executed at a token budget of 2,048. A total of 16 reasoning traces are generated per question
which are used by the Metacognitive Strategist to curate a behavior handbook for that question. Finally,
these behaviors are fed back into the model to generate improved reasoning traces at budgets ranging from
2,048 to 16,384 ((B,Q)→R2).

1000 2000 3000 4000 5000 6000
Average Number of Tokens

30

35

40

45

50

55

Ac
cu

ra
cy

 (
%

)

(a) Accuracy on AIME–24

1000 2000 3000 4000 5000 6000
Average Number of Tokens

45

50

55

60

65

70

75

80

85

Pa
ss

@
16

 (
%

)

(b) Pass@16 on AIME–24
Critique-and-Revise Self-Improvement
Behavior-Guided Self-Improvement

2048 tokens
4096 tokens

8192 tokens
16384 tokens

Figure 7 Self-improvement Comparison of the critique-and-revise
baseline ((Q,R1)→R2) with the proposed behavior-guided variant
((B,Q)→R2) on AIME–24. The accuracy is averaged across 80 runs.
Pass@16 is averaged across 5 different sets of 16 runs each. The
x-axis denotes the average number of tokens generated across all
solutions. The behavior-guided approach produces more tokens for
a given token-budget compared to the critique-and-revise baseline.
However, it also performs significantly better than the critique-and-
revise baseline. All runs use R1-Llama-70B with the initial trace
budget fixed at 2,048 tokens and the revision budget varied from
2,048 to 16,384.

Results Results for this exper-
iment are presented in Figure 7.
Three consistent patterns emerge.
(1) Accuracy gains: Conditioning
on extracted behaviors ((B,Q)→
R2) outperforms the critique-and-
revise baseline ((Q,R1)→R2) at
almost every revision token bud-
get evaluated. The gap is mod-
est at low budgets but widens as
the available generation budget in-
creases, indicating that the behav-
ior hints help the model make bet-
ter use of additional tokens. (2)
Test time scaling: Performance for
behavior-guided self-improvement
improves smoothly with increasing
budgets thus maintaining the test-
time scaling property of the origi-
nal R1-Llama-70B model while the
critique-and-revise approach strug-
gles to scale performance by uti-
lizing higher token budgets. (3)
Token-cost tradeoff: As opposed
to the observations from the previ-
ous sections, the behavior-guided
approach is less token-efficient
than the baseline in this case producing more output tokens than the baseline.

9

5.3 Supervised fine-tuning with Behaviors

Behavior-conditioned supervised fine-tuning (BC-SFT) tries to incorporate good behaviors into the model’s
parameters. In this setting, R1-Llama-70B is the Metacognitive Strategist which generates behaviors as
well as the Teacher which generates behavior-conditioned responses for training. The following 4 candidates
are used as Student models which are fine-tuned: Qwen2.5-14B (Qwen et al., 2025), Qwen2.5-32B-Instruct
(Qwen et al., 2025), Qwen3-14B (Bai et al., 2023), and Llama-3.1-8B (Dubey et al., 2024).

Dataset construction. The problems from the S1 dataset (Muennighoff et al., 2025) are used to cre-
ate the training datasets used in this experiment. For each problem Qi, the Metacognitive Strategist
(R1-Llama-70B) is used to create a set of behaviors using the pipeline from Section 3. A single reasoning
trace Ri is used per problem to create the behavior handbook. Each step in the pipeline is run at a token
budget of 14,000. Next, using BCI, a dataset of behavior-conditioned responses is curated using the Teacher
(R1-Llama-70B) model for training the Student models.

DBC = {(Q0, R̂0), . . . , (Qn, R̂n)}.

where, R̂i is the behavior-conditioned response generated from the Teacher. The behaviors are retrieved from
the behavior handbook based on question matching i.e. behaviors generated from a given question are used
in-context for generating a response to that question. For the baseline, the Student models are trained on
the corpus of the original reasoning traces generated from the Teacher with normal inference.

DSFT = {(Q0, R0), . . . , (Qn, Rn)}.

Importantly, behaviors are not provided as input during fine-tuning on DBC, or in-context during test-time;
any benefit at test time therefore reflects knowledge distilled into the parameters themselves.

2000 4000 6000 8000
Average Number of Tokens

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ac
cu

ra
cy

 (
%

)

(a) Llama-3.1-8B-Instruct

2000 4000 6000 8000
Average Number of Tokens

4

6

8

10

12

14

16

Ac
cu

ra
cy

 (
%

)

(b) Qwen-2.5-14B-Base

2000 4000 6000
Average Number of Tokens

10

15

20

25

30

35

Ac
cu

ra
cy

 (
%

)

(c) Qwen2.5-32B-Instruct

2000 4000 6000
Average Number of Tokens

10

20

30

40

50

Ac
cu

ra
cy

 (
%

)

(d) Qwen3-14B

Original Model SFT BC-SFT 2048 tokens 4096 tokens 8192 tokens

Figure 8 SFT Experiment: AIME–24. Each panel plots accuracy (%) versus the average number of generated tokens for
one base model. Three variants are evaluated: Original (no additional training), SFT (fine-tuned on the original
corpus DSFT), and BC-SFT (fine-tuned on behavior-conditioned SFT corpus DBC-SFT). The accuracy is averaged
across 80 runs. Each point on the line indicates a given token-budget which is enforced during generation as shown in
the legend. The BC-SFT fine-tuned model consistently achieves superior performance compared to the other two
variants across all token budgets while also being more token efficient.

Training setup and evaluation. The same setting as that of Muennighoff et al. (2025) is adapted for this
experiment. Each model is fine-tuned with a 16,384-token context window. At inference only the question is
supplied to the model and decoding is performed with budgets from 2,048 to 8,192 tokens.

Results. Figures 8 and 9 report AIME–24/25 accuracy as a function of generated tokens for all four base
models (Original, SFT, and BC -SFT variants; 2,048–8,192 token budgets). The results suggest: the BC-SFT
models are not only more token-efficient, they also deliver higher accuracy than both baselines across nearly

10

all budgets. Moreover, BC-SFT is more effective at transforming non-reasoning models such as Qwen2.5-
14B-Base and Qwen2.5-32B-Instruct into reasoning models as opposed to the SFT baseline. This contrasts
with the earlier in-context BCI experiments, where the dominant benefit at large budgets (> 8,192 tokens)
was efficiency—models produced fewer tokens while roughly matching (or only slightly exceeding) baseline
accuracy. Here, by contrast, BC-SFT confers genuine quality gains: models trained on behavior-conditioned
traces routinely outperform those trained on the original traces even when decoding with the same budget,
indicating that the fine-tuning signal imparts useful reasoning behaviors rather than merely teaching the
model to be terse. To probe whether these gains could be attributed simply to better answer correctness in
the training data, the responses in DSFT and DBC were evaluated against the S1 reference answers, obtaining
42.7% and 44.4% accuracy, respectively—a negligible gap that cannot explain the downstream performance
deltas. Nevertheless, models trained on DBC achieve markedly superior AIME performance (see especially
panel (b) in Figures 8 and 9, Qwen2.5-14B-Base, where accuracy scales sharply with budget under BC-SFT
while the plain SFT model improves only modestly). Taken together, these results strengthen the hypothesis
that behavior-conditioned supervision injects useful intermediate reasoning traits into model parameters,
enabling stronger and more efficient problem solving than conventional SFT.

2000 4000 6000 8000
Average Number of Tokens

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

Ac
cu

ra
cy

 (
%

)

(a) Llama-3.1-8B-Instruct

2000 4000 6000 8000
Average Number of Tokens

4

6

8

10

12

Ac
cu

ra
cy

 (
%

)

(b) Qwen-2.5-14B-Base

2000 4000 6000
Average Number of Tokens

10

15

20

25

30

35

Ac
cu

ra
cy

 (
%

)

(c) Qwen2.5-32B-Instruct

2000 4000 6000
Average Number of Tokens

5

10

15

20

25

30

35

40

Ac
cu

ra
cy

 (
%

)

(d) Qwen3-14B

Original Model SFT BC-SFT 2048 tokens 4096 tokens 8192 tokens

Figure 9 SFT Experiment: AIME–25. Each panel plots accuracy (%) versus the average number of generated tokens for
one base model. Three variants are evaluated: Original (no additional training), SFT (fine-tuned on the original
corpus DSFT), and BC-SFT (fine-tuned on behavior-conditioned SFT corpus DBC-SFT). The accuracy is averaged
across 80 runs. Each point on the line indicates a given token-budget which is enforced during generation as shown in
the legend. The BC-SFT fine-tuned model consistently achieves superior performance compared to the other two
variants across all token budgets while also being more token efficient.

6 Conclusion and Limitations

This work introduces a mechanism through which large language models can utilize their metacognitive
abilities to distil their own recurring reasoning patterns into concise behaviors. Storing and retrieving these
behaviors closes a key efficiency gap in LLM reasoning: rather than re-deriving the same intermediate results,
the model simply recalls a relevant behavior and spends its budget on new reasoning. Across three complemen-
tary settings—behavior-conditioned inference, behavior-guided self-improvement, and behavior-conditioned
supervised fine-tuning—the proposed approach demonstrates consistent gains in both accuracy and token
efficiency on challenging math benchmarks.

Beyond mathematics, the framework is model- and domain-agnostic, inviting exploration in programming,
theorem proving, scientific reasoning, and open-ended dialogue. Still, several limitations remain. For BCI,
the behaviors are retrieved based on the question itself and once they are provided at the beginning, the
behavior list is fixed i.e. new behaviors cannot be added to the context. Ideally, a more elegant solution
would be that the model retrieves the required behavior on the fly during reasoning. Such, a capability could
in-principle be incorporated into the model via training to query the behavior handbook as a “tool”. Secondly,
the exploration in this paper serves as proof-of-concept to show the benefits of the behavior framework for
LLM reasoning, it remains to be seen whether this framework can be scaled to - 1) Curate a large library of

11

behaviors across many domains and retrieve from it during inference; 2) Performing SFT at a larger scale
with a massive corpus rewritten using behaviors to improve the smaller models as well as self-improve the
model used for curating behaviors and rewriting responses.

Overall, converting slow chains of thought into fast, reusable behaviors enables efficient and scalable reasoning
with LLMs, pointing toward LLMs that learn not just to solve problems, but also remember how.

References

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang,
et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican, George Bm
Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al. Improving language models by
retrieving from trillions of tokens. In International conference on machine learning, pages 2206–2240. PMLR, 2022.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding: Multi-lingual, multi-
functionality, multi-granularity text embeddings through self-knowledge distillation. arXiv preprint arXiv:2402.03216,
2024.

Aniket Didolkar, Anirudh Goyal, Nan Rosemary Ke, Siyuan Guo, Michal Valko, Timothy Lillicrap, Danilo
Rezende, Yoshua Bengio, Michael Mozer, and Sanjeev Arora. Metacognitive capabilities of llms: An ex-
ploration in mathematical problem solving. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet,
J. Tomczak, and C. Zhang, editors, Advances in Neural Information Processing Systems, volume 37, pages
19783–19812. Curran Associates, Inc., 2024. https://proceedings.neurips.cc/paper_files/paper/2024/file/
2318d75a06437eaa257737a5cf3ab83c-Paper-Conference.pdf.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré, Maria
Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil
Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv e-prints, pages arXiv–2407,
2024.

John Flavell. Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American
Psychologist, 34:906–911, 10 1979. doi: 10.1037/0003-066X.34.10.906.

Yichao Fu, Junda Chen, Siqi Zhu, Zheyu Fu, Zhongdongming Dai, Aurick Qiao, and Hao Zhang. Efficiently serving
llm reasoning programs with certaindex. arXiv preprint arXiv:2412.20993, 2024.

Jiaxuan Gao, Shusheng Xu, Wenjie Ye, Weilin Liu, Chuyi He, Wei Fu, Zhiyu Mei, Guangju Wang, and Yi Wu. On
designing effective rl reward at training time for llm reasoning. arXiv preprint arXiv:2410.15115, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi
Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948, 2025.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented language model
pre-training. In International conference on machine learning, pages 3929–3938. PMLR, 2020.

Junxian He, Graham Neubig, and Taylor Berg-Kirkpatrick. Efficient nearest neighbor language models. arXiv preprint
arXiv:2109.04212, 2021.

Yinghui He, Abhishek Panigrahi, Yong Lin, and Sanjeev Arora. Adaptmi: Adaptive skill-based in-context math
instruction for small language models, 2025. https://arxiv.org/abs/2505.00147.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob
Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv preprint arXiv:2103.03874,
2021.

Simran Kaur, Simon Park, Anirudh Goyal, and Sanjeev Arora. Instruct-skillmix: A powerful pipeline for LLM
instruction tuning. In The Thirteenth International Conference on Learning Representations, 2025. https:
//openreview.net/forum?id=44z7HL4mfX.

12

https://proceedings.neurips.cc/paper_files/paper/2024/file/2318d75a06437eaa257737a5cf3ab83c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/2318d75a06437eaa257737a5cf3ab83c-Paper-Conference.pdf
https://arxiv.org/abs/2505.00147
https://openreview.net/forum?id=44z7HL4mfX
https://openreview.net/forum?id=44z7HL4mfX

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman, Lester James V
Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers in open language model post-training.
arXiv preprint arXiv:2411.15124, 2024.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler,
Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented generation for knowledge-intensive nlp
tasks. Advances in neural information processing systems, 33:9459–9474, 2020.

MAA. American invitational mathematics examination – aime, February 2024. https://maa.org/math-competitions/
american-invitational-mathematics-examination-aime. American Invitational Mathematics Examination, Febru-
ary 2024.

MAA. American invitational mathematics examination – aime, February 2025. https://maa.org/math-competitions/
american-invitational-mathematics-examination-aime. American Invitational Mathematics Examination, Febru-
ary 2025.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer, Percy
Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time scaling. arXiv preprint arXiv:2501.19393,
2025.

Xuefei Ning, Zinan Lin, Zixuan Zhou, Zifu Wang, Huazhong Yang, and Yu Wang. Skeleton-of-thought: Large language
models can do parallel decoding. Proceedings ENLSP-III, 2023.

OpenAI. Openai o1 system card, 2024. https://arxiv.org/abs/2412.16720.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren
Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin
Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang
Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report,
2025. https://arxiv.org/abs/2412.15115.

Vedant Shah, Dingli Yu, Kaifeng Lyu, Simon Park, Jiatong Yu, Yinghui He, Nan Rosemary Ke, Michael Mozer,
Yoshua Bengio, Sanjeev Arora, and Anirudh Goyal. Ai-assisted generation of difficult math questions, 2025.
https://arxiv.org/abs/2407.21009.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li,
Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. arXiv
preprint arXiv:2402.03300, 2024.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike Lewis, Luke Zettlemoyer, and Wen-tau
Yih. Replug: Retrieval-augmented black-box language models. arXiv preprint arXiv:2301.12652, 2023.

Mingyang Song, Mao Zheng, Zheng Li, Wenjie Yang, Xuan Luo, Yue Pan, and Feng Zhang. Fastcurl: Curriculum
reinforcement learning with progressive context extension for efficient training r1-like reasoning models. arXiv
e-prints, pages arXiv–2503, 2025.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao, Chenzhuang
Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with llms. arXiv preprint arXiv:2501.12599,
2025.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving retrieval with chain-of-
thought reasoning for knowledge-intensive multi-step questions. arXiv preprint arXiv:2212.10509, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing
systems, 35:24824–24837, 2022.

Daniel B. Willingham, Matthew J. Nissen, and Penny Bullemer. On the development of procedural knowledge. Journal
of Experimental Psychology: Learning, Memory, and Cognition, 15(6):1047–1060, 1989. doi: 10.1037/0278-7393.15.
6.1047.

Heming Xia, Chak Tou Leong, Wenjie Wang, Yongqi Li, and Wenjie Li. Tokenskip: Controllable chain-of-thought
compression in llms. arXiv preprint arXiv:2502.12067, 2025.

13

https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2407.21009

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React: Synergizing
reasoning and acting in language models. In International Conference on Learning Representations (ICLR), 2023.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for reasoning. arXiv
preprint arXiv:2502.03387, 2025.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-zoo: Investigating
and taming zero reinforcement learning for open base models in the wild. arXiv preprint arXiv:2503.18892, 2025a.

Zihao Zeng, Xuyao Huang, Boxiu Li, Hao Zhang, and Zhijie Deng. Done is better than perfect: Unlocking efficient
reasoning by structured multi-turn decomposition. arXiv preprint arXiv:2505.19788, 2025b.

14

Appendix
Subject Behavior Name Behavior Instruction

Algebra

behavior_use_systematic_verification When performing multi-step calculations, use a systematic approach
such as creating a table to track each step’s results, ensuring each
step is verified before proceeding to the next.

behavior_simplify_after_substitution After substituting variables, simplify the resulting expression as
much as possible to enhance clarity and correctness.

behavior_recognize_algebraic_patterns Look for common patterns such as perfect squares, cubes, or fac-
torable forms to simplify problem-solving and reduce errors.

behavior_always_rationalize_denominators Always rationalize denominators to present answers in simplest
form, avoiding radicals in the denominator.

behavior_check_units Verify all units are consistent before performing calculations; e.g.,
ensure time is in years if the rate is annual.

Prealgebra

behavior_assign_variables_wisely Use descriptive variable names that match their meaning in the
problem to avoid confusion.

behavior_prioritize_calculation_order Follow the correct order of operations to maintain accuracy.
behavior_translate_words_to_equation Convert phrases into math expressions; e.g., "one and one-half of a

number" becomes (3/2)x.
behavior_understand_independent_events Identify independent events and apply the multiplication rule ac-

cordingly.
behavior_check_for_zero_exponents Confirm non-zero base before applying the rule that anything to

the zero power is 1.

Counting and Probability

behavior_counting_principle Multiply the number of choices for each independent step to get
total possibilities.

behavior_inclusion_exclusion_principle Use P (A∪B) = P (A)+P (B)−P (A∩B) to avoid double-counting.
behavior_complementary_probability Use the complement when it’s simpler than calculating direct prob-

ability.
behavior_consider_symmetry Account for symmetries in arrangements (e.g., rotations) to reduce

unique cases.
behavior_binomial_distribution Use binomial formula P (k) = C(n, k)pk(1 − p)n−k for fixed, inde-

pendent binary trials.

Geometry

behavior_use_shoelace_formula Use the shoelace formula to find polygon area from coordinates.
behavior_use_trigonometric_relations Apply Law of Sines, Cosines, or dot products for angle-side rela-

tionships.
behavior_analyze_quadrant_signs Use sign rules for trig functions based on angle quadrant.
behavior_use_cross_product_for_area Use cross product to compute area of polygons using vectors.
behavior_check_perpendicularity_with_dot_product Dot product of zero implies vectors are perpendicular.

Precalculus

behavior_apply_power_reduction_formulas Use power-reduction identities to simplify high powers of sine/co-
sine.

behavior_use_tangent_addition_formula Use tan(A + B) formula to simplify expressions involving tangent
sums.

behavior_convert_to_polar_form Use polar form for complex operations like exponentiation.
behavior_magnitude_calculation Square each component, sum them, and take square root for vector

magnitude.
behavior_check_orthogonality Dot product of 0 means vectors are orthogonal.

Number Theory

behavior_check_prime_factors Confirm prime factorization is complete and correct for each number.
behavior_convert_between_bases Expand each digit’s place value step-by-step when converting bases.
behavior_factor_common_terms Factor out shared terms early to simplify later computation.
behavior_recognize_repeating_patterns Use repeating digit patterns to aid in factoring or GCD steps.
behavior_systematically_record_remainders Track remainders carefully in Euclidean algorithm or base conver-

sion.

Intermediate Algebra

behavior_apply_vieta_formulas Use Vieta’s formulas to relate polynomial roots to coefficients.
behavior_recognize_telescoping_patterns Identify cancellation patterns in fraction products to simplify.
behavior_use_calculus For optimization, derive the function, find critical points using

calculus.
behavior_recognize_conjugate_pairs Know complex roots appear in conjugate pairs in real-coefficient

polynomials.
behavior_triangle_inequality_check Ensure sum of any two sides exceeds the third to form a triangle.

Table 2 Examples of behaviors curated from the MATH Dataset (Hendrycks et al., 2021)

15

Behavior Name Behavior Instruction
behavior_permutation_with_restrictions Use permutation techniques with restrictions to count valid configura-

tions in grid problems.
behavior_rhombus_incircle_distances In a rhombus, the sum of distances from any point on the incircle to

two opposite sides is equal to twice the inradius.
behavior_opposite_sides_sum In a parallelogram, the sum of distances from any interior point to two

opposite sides is constant and equal to the height between those sides.
behavior_periodicity Recognize repeating patterns in remainders to efficiently count valid

numbers within a range.
behavior_remainder_distinctness Always check that remainders from different moduli are distinct, espe-

cially when moduli are not pairwise coprime.
behavior_dynamic_programming Use dynamic programming to break down complex problems into

smaller subproblems and solve them recursively.
behavior_ptolemy_theorem Apply Ptolemy’s theorem to cyclic quadrilaterals to find relationships

between sides and diagonals, such as AC ·BD = AB ·CD+AD ·BC.
behavior_concurrent_intersections For each point where k lines intersect, adjust the intersection count

by subtracting (
(k
2

)
− 1) to account for overlapping.

behavior_volume_ratio_parallelepiped Calculate the volume ratio of two noncongruent parallelepipeds by
considering the angles between their edges and applying the volume
formula for rhombohedrons.

behavior_vector_analysis Use vector methods or barycentric coordinates to simplify geometric
problems involving angles and concurrency.

behavior_fibonacci_non_consecutive Use the Fibonacci sequence to count subsets with no two consecutive
elements; for a set of size n, the count is the (n + 2)th Fibonacci
number.

behavior_legendre_formula Use Legendre’s formula to find the exponent of a prime in the factor-
ization of a factorial.

behavior_modular_overlap Use systematic methods like the Chinese Remainder Theorem and
inclusion-exclusion to detect and count overlaps in modular conditions.

behavior_distance_from_point_to_line Calculate the distance from a point to a line using |Ax+By+C|√
A2+B2

to

verify tangency.
behavior_perpendicular_lines Recognize that radii to tangent points are perpendicular to the tangent

line, aiding in finding slopes and equations.
behavior_pythagorean_theorem Use the Pythagorean theorem a2 + b2 = c2 to find the length of a side

in a right triangle.
behavior_diophantine_simplification Simplify Diophantine equations by factoring out common terms or

recognizing patterns in coefficients.
behavior_tangent_properties Recall that the radius of a circle is perpendicular to the tangent at

the point of tangency, aiding in determining the center.
behavior_mixtilinear_incircle_radius Calculate the radius of a mixtilinear incircle using:

rA =
R·sin2(A

2
)

1−sin(A
2
)

for ex-mixtilinear, and

rA =
R·sin2(A

2
)

1+sin(A
2
)

for internal mixtilinear circles.

behavior_proportion_analysis When dealing with proportions before and after an event, set up
equations based on initial and final proportions and solve methodically.

Table 3 Examples of behaviors curated from AIME–22 and AIME–23 sets.

16

Behavior Name Behavior Instruction
behavior_grid_assignment_counting Calculate the number of configurations for grid problems by considering

2(rows + columns), adjusted for constraints.
behavior_use_properties_of_exponents Use properties of exponents to combine terms efficiently when simpli-

fying expressions.
behavior_count_rectangles_in_regular_polygons When counting rectangles in a regular polygon, consider perpendicular

diagonal pairs and use symmetry to avoid overcounting. For a regular
n-gon, identify all sets of four vertices forming rectangles by checking
perpendicularity and equal lengths.

behavior_domain_restriction When dealing with functions like tanh, which have restricted ranges,
always consider their effect on derived variables to set valid domains
for optimization.

behavior_consistent_signage Maintain consistent sign conventions, especially when solving geometry
problems in coordinate space.

behavior_convert_log_to_exponential Convert logarithmic equations to exponential form to simplify variable
relationships.

behavior_transcendental_equation_handling Recognize when equations may not admit algebraic solutions and
consider numerical or graphical methods instead.

behavior_fermats_little_theorem Apply Fermat’s Little Theorem: if p is prime and n is not divisible by
p, then np−1 ≡ 1 mod p.

behavior_tangent_segment_length Calculate tangent length from a point to a circle using
√
d2 − r2, where

d is the distance to the center and r is the radius.
behavior_time_conversion Always convert hours to minutes or vice versa to maintain consistent

units throughout time calculations.
behavior_inradius_calculation Use r = Area/s to find the inradius of a triangle, where s is the

semi-perimeter.
behavior_calculus_optimization Use calculus to find extrema: compute the derivative, set it to zero,

solve for critical points, and verify using the second derivative or sign
changes.

behavior_astroid_properties Recognize the astroid formed by envelopes from (p, 0) to (0, q) satisfying
p2+q2 = 1. The astroid is given by x2/3+y2/3 = 1, useful for tangency
problems.

behavior_counting_symmetric_pairs In regular polygons, count figures by analyzing all symmetric vertex
pairs and step sizes. For a dodecagon, consider both k and n− k step
sizes.

behavior_systematic_enumeration Enumerate all cases methodically while honoring constraints to avoid
missed or duplicate solutions.

behavior_apply_intercept_theorem In problems with parallel lines cutting segments, use the intercept
theorem to relate segment lengths proportionally.

behavior_law_of_cosines Use c2 = a2 + b2 − 2ab cos(C) to connect side lengths and angles in
triangles.

behavior_mode_implications Use the fact that the mode appears more frequently than other values
to structure the dataset accordingly.

behavior_hyperbolic_identities Use identities like cosh2 θ − sinh2 θ = 1 when parametrizing or manip-
ulating hyperbolas.

behavior_use_cyclic_properties In cyclic quadrilaterals, apply Ptolemy’s Theorem or Power of a Point
to relate sides and diagonals.

Table 4 Example of behaviors obtained from AIME-24 for the self-improvement experiment

17

Behavior Name Behavior Instruction

behavior_distance_from_point_to_line Calculate the distance from a point to a line using |ax+by+c|√
a2+b2

.

behavior_arrhenius_formula Apply the Arrhenius formula k = A · exp
(
− E

kBT

)
for temperature-

dependent reaction rates.
behavior_gradient_check Verify that the gradient (sum of unit vectors) is zero at a potential

minimizer to confirm it’s the geometric median.
behavior_iterative_methods Use iterative algorithms like the Weiszfeld method to approximate the

geometric median when a closed-form solution is not feasible.
behavior_dipole_potential_inside For dipole-like surface charge distributions, the electric potential inside

a spherical shell behaves like r cos θ.
behavior_permutations_with_duplicates Compute distinct permutations with repeated elements using

n!
n1!n2!···nk!

.

behavior_area_parallelogram_complex Compute the area of a parallelogram formed by complex numbers
using the imaginary part of z1 · z2.

behavior_divergent_series_handling Be cautious with divergent series; sometimes combinations of divergent
sums can converge via cancellation.

behavior_transposition_cycles The minimum number of transpositions to sort a permutation is n− c,
where c is the number of cycles.

behavior_kl_divergence_relations The chi-square statistic is twice the leading term in the Taylor expan-
sion of the Kullback–Leibler divergence.

behavior_gcd_usage Use the GCD to break down integers and solve linear Diophantine
equations like ax+ by = d.

behavior_mirror_formula Use the mirror formula 1
f

= 1
v
+ 1

u
for image distances in spherical

mirrors.
behavior_kinetic_energy_eV Mean kinetic energy of a gas molecule is E = 3

2
kT , where k =

8.617× 10−5 eV/K.
behavior_midpoint_calculation Find the midpoint of a segment using the average of the endpoints’

coordinates.
behavior_prime_exponent_independence Treat each prime factor independently when handling divisibility con-

ditions; calculate probabilities separately then combine.
behavior_cauchy_variation Add a constant to f(x+y) = f(x)+f(y)+C and define g(x) = f(x)+C

to convert to a Cauchy equation.
behavior_lambert_w_recognition Recognize that equations like xex = k can be solved using the Lambert

W function: x = W (k).
behavior_permutation_cycles Consider cycle structure to simplify permutation counting, especially

with required or forbidden cycle lengths.
behavior_cubing_and_cube_roots Recognize cubes or cube roots to simplify expressions, especially in

volume-related problems.
behavior_lagrange_multipliers Use Lagrange multipliers for constrained optimization by forming the

Lagrangian and solving the system from partial derivatives.

behavior_lorentz_factor_approximation Use
√

1− v2/c2 ≈ 1 − v2

2c2
to approximate time dilation effects at

small velocities.

Table 5 Examples of behaviors curated on the S1 dataset (Muennighoff et al., 2025) for the SFT experiment.

18

	Introduction
	Paper Outline

	Related Work
	Behaviors from Reasoning traces
	Behavior-Guided Reasoning
	Behavior-conditioned inference
	Behavior-guided self-improvement
	Behavior-conditioned supervised fine-tuning

	Experimental Results
	Behavior-conditioned Inference for efficient Mathematical Reasoning
	Self-Improvement using Behaviors
	Supervised fine-tuning with Behaviors

	Conclusion and Limitations

