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Abstract—Automatic semantic annotation of data from
databases or the web is an important pre-process for data
cleansing and record linkage. It can be used to resolve the
problem of imperfect field alignment in a database or identify
comparable fields for matching records from multiple sources.
The annotation process is not trivial because data values may
be noisy, such as abbreviations, variations or misspellings. In
particular, overlapping features usually exist in a lexicon-based
approach. In this work, we present a probabilistic address parser
based on linear-chain conditional random fields (CRFs), which
allow more expressive token-level features compared to hidden
Markov models (HMMs). In additions, we also proposed two
general enhancement techniques to improve the performance.
One is taking original semi-structure of the data into account.
Another is post-processing of the output sequences of the parser
by combining its conditional probability and a score function,
which is based on a learned stochastic regular grammar (SRG)
that captures segment-level dependencies. Experiments were
conducted by comparing the CRF parser to a HMM parser
and a semi-Markov CRF parser in two real-world datasets. The
CRF parser out-performed the HMM parser and the semi-
Markov CRF in both datasets in terms of classification accuracy.
Leveraging the structure of the data and combining the linear-
chain CRF with the SRG further improved the parser to achieve
an accuracy of 97% on a postal dataset and 96% on a company
dataset.

I. INTRODUCTION

Record linkage is the task of finding records that refer to the
same entity across one or more data sources. The challenges of
record linkage comes from three main aspects. At the schema-
level, heterogeneous data from multiple sources might exhibit
different schemas for the same domain, such as differing ad-
dresses schemas. Once some comparable fields across multiple
schemas have been identified, their field alignments have been
found to be imperfect at the field-level. The misalignment can
also exist for the data coming from the same source. At the
data-level, noise in the data needs to be taken into account;
e.g., data formats (“Unit 6-7” vs. “Unit 6/7”), typographical
errors (“London” vs. “Londoon”), abbreviations (“Industrial
Park” vs. “Ind PK”), missing values (“Queens Building” vs.
“Queens”), and so on.

There has been much more work done regarding the issues
at the schema-level and the data-level than at the field-level in
record linkage[1], [2]. An illustrative example of the imperfect
field alignment is shown in Table I. Record 1 and record
2 refer to the same restaurant in a database and need to

be identified as the same entity to uphold data integrity.
Most of the variations in data, i.e., misspelling (“Morto” vs.
“Morton”) and abbreviations ( “Los Angeles” vs. “La”), occurs
at the data-level. However, the second record’s State field
contains both postcode and state information, which would
not be suitable when it is compared to other records directly.
Jaro—Winkler similarity [3] between strings in each field of the
record is also shown in Table 1. Values of string comparisons
in both State and PostCode fields are zero, so a non-matching
decision is more likely to be made. An effective address parser
could successfully identify “90048” in the second record
as a postcode so that the parsed data could be re-arranged
accordingly. As we can see from Table I, more meaningful
values of string comparison can be achieved by resolving these
imperfect field alignment issues.

In the real-world, addresses are often inconsistent, incom-
plete and errant in nature. Preprocessing of the data with
addresses needs to take place before record linkage. In this
work, we are interested in address parsing, which attempts
to assign a semantic label to every token in an address so
that a pair of the records can be better aligned against each
other independent of whether the records come from the same
database or from sources with different schemas.

Traditional rule-based address parsers have been shown to
be limited in terms of classification accuracy and require too
much domain knowledge in order to design the system [4].
Several probabilistic address parsers based on hidden Markov
models (HMMs) [5], [4], [6] were developed to improve rule-
based systems. However, generative models, such as Bayesian
Networks or HMMs, have more difficulties when dealing with
rich and complex features compared to discriminative models.
Our proposed address parser is based on a conditional random
field (CRF) model, a discriminative sequential classifier that
has been applied to many other annotation tasks ranging from
image segmentation [7] to entity extraction [8], [9].

Overlapping features are automatically extracted from raw
addresses given a set of specialised lexicons, such as road
types or county names. Boundaries between fields are also
taken into account so that the data in different fields are less
likely to be tagged as being in the same semantic category.
However, informative token-wise features could be missing
because of the incompleteness of our reference data or noisy
input data, which affects the final classification performance.
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TABLE I
AN EXAMPLE OF DATA WITH IMPERFECT FIELD ALIGNMENT.

Record Restaurant  Street City State PostCode
1 Morton’s 435 S La Cienega Blvd Los Angeles CA 90048

2 Morto’s 435 S Los Angeles Cienega Blvd  La 90048,CA

JaroWinkler 0.98 0.51 0.58 0 0

Parsed Records

1 Morton’s 435 S La Cienega Blvd Los Angeles CA 90048

2 Morto’s 435 S Los Angeles Cienega Blvd  La CA 90048
JaroWinkler 0.98 0.51 0.58 1 1

In this work, a score derived from a learned stochastic regular
grammar (SRG) is combined with the conditional probabilities
of the CRF for reordering of the output sequences. The learned
SRG is intended to capture the segment-level dependencies
which cannot be easily supported by the token-wise feature
model. Experiments on two real-world datasets demonstrated
a better annotation result of our address parser than a HMM
parser and a semi-Markov CRF parser [10] that one might
expect to work better than the linear-chained CRF because of
its ability to learn the segment-level dependencies. Differences
between address parsing and standard name-entity recogni-
tions (NERs) [11] are also discussed.

The rest of the paper is organized as follows. Section II
discusses work that is related to address parsing. Section
IIT presents background on conditional random fields for
sequential classification. A lexicon-based address parser using
linear-chained CRFs and stochastic regular grammar is shown
in Section IV. In Section V, we present our empirical results
by comparing our address parser to a HMM address parser
and a semi-Markov CRF address parser on two real-world
datasets. Finally, we conclude the paper and discuss future
work in Section VL.

II. RELATED WORK

The first HMM-based address parser was proposed by
Borkar et al. [5]. The hidden Markov model [12] consists of
a set of observations and a set of states. Each state can transit
to any other state associated with a transition probability and
there is also an observation matrix that governs how likely an
observation is generated by the state. Both transition matrix
and observation matrix can be learned from a set of training
examples using the maximum likelihood approach. Given a
new sequence of observations, the best state sequence can be
computed by the Viterbi algorithm [12]. The states in [5] are
semantic labels for the address tokens; the observations in
[5] are extracted based on the characteristics of tokens: all
individual numbers are converted to a single special token;
all delimiters are converted to another special symbol; all
alphabetic words are left the same. One drawback of this
approach is trying to learn the relationship directly between
the semantic label and the individual raw token. If the training
data does not have enough coverage on all possible tokens,
a smoothing technique usually has to be employed in order
to take care of any unseen token. For instance, a small

observation probability can be assigned to the unseen token
from the states. No special lexicons were used to extract
observations further from the raw tokens. Li et al. [6] trained
a similar HMM address parser based on nearly 100 million
unique addresses from a high quality data source. In particular,
they added some variations to generate better synthetic data.
However, such large high-quality training data might not be
available at the first place for a specific country and there is
also no flexibility to design an alternative schema rather than
the one used at the ‘golden’ source.

Churches et al. [4] designed an alternative HMM-based
parser that makes more use of reference tables for extracting
observations. Each address input string is firstly tokenised
into a set of words and then each word is assigned with
an observation from a set of look-up tables. The reference
tables contain information about postal codes, city names or
county names from postal authorities or governments. The
observation assignments follow a greedy matching algorithm,
which prefers assigning labels over a sequence of words than
the individual word. Automatically generated observations are
not good enough for parsing an arbitrary address because the
greedy assignment algorithm is deterministic so that each word
is always given a particular label. For example, “London”
is always observed as “City” even when appearing in other
contexts, such as “London Road” where it is more likely to
be a street name. A HMM is able to recover from this incorrect
observation by considering the underlying state sequence.

However, HMMs do not allow more complex observations,
such as multiple observations for one token at the same time. A
simple extension of previous HMM address parsers to handle
multiple observations was done in [13], where all possible
observation sequences are considered as input of the Viterbi
algorithm and the best states sequence is the one with highest
probability. However, the number of observation sequences is
therefore exponential to the number of tokens in an address.

An early attempt of allowing complex observations without
concern of their dependant relationships was using maxi-
mum entropy Markov models (MEMMs) [14]. The transition
function and the observation function of traditional HMMs
are replaced by a single transition function so that current
state depends not only on previous state but also on current
observations. However, there is a major weakness of MEMMs,
which is called the label bias problem. Because each transition
function is normalised per-state rather than over the entire



sequence, significant bias can be passed from one state to
the next. Conditional random fields can be considered as
unnormalised version of MEMMs [15], so that the label bias
problem can be avoided by considering normalisation over all
sequences.

Semi-Markov CRFs have been proposed to capture the label
dependency [10] at segment-level rather than at token-level as
in linear-chain CRFs , which have been shown improvements
in many name-entity recognitions (NERs)[11], [16]. However,
there are two main differences between standard NERs and
address parsing. First of all, entity values in many NERs are
distinct, such as DNA names and RNA names in bioinfor-
matics. In the addresses, entity values can be overlapping, for
instance, “market street” can be either a road name or a sub-
locality. Secondly, the entities in NERs usually have distinct
segment-level features, such as “entity length” or “similarity
to other known entities”. The segment-level similarities are
usually computed based on the dictionaries that store some
full-length entities. In the address parsing, although some of
our lexicons do store full-length entities, such as cities or
counties, we only store some part of other entities, such as
road identifiers (“road”, “street”) for road entity. There is no
sufficient segment-level features for all entities. Overall, the
address parsing can be considered as a multi-entity extraction
problem with overlapping entity values and the external dic-
tionaries do not have full-length entity values. It is anticipated
that semi-Markov CRFs do not produce comparable results for
the address parsing.

III. CONDITIONAL RANDOM FIELDS

In this section, we are going to provide some background
on conditional random fields: a discriminative approach for
solving problems of sequential classification.

Following the work in [17], let X = (x1,X2,...,X7) be an
input feature vector sequence , and Y = (y1,¥2,...,yr) be a
random output variable over the sequential data X of length 7.
Then x; = {x+1, 42, ..., Tei } 18 a feature vector with (fixed)
size K and y; is assumed to range over a finite label alphabet
S. The input sequence X are assumed to be observed, and
called the features, and the outputs Y are named (underlying)
labels. The goal of sequential classification is to find the best
assignment to Y given the features X. For example, in natural
language processing, the task of part-of-speech tagging is to
assign a particular part-of-speech tag (such as noun, verb or
preposition) to each word in a sentence. Thus ¥, in this case, is
the part-of-speech tag assigned to t* word in the sentence, and
X, is a feature vector that captures useful information about the
corresponding words. For instance, x; could include a binary
variable x;; to indicate whether the word is capitalised.

Generative approaches, such as Bayesian networks and hid-
den Markov models, focus on maximising the joint distribution
p(Y, X); which is usually computed by applying Bayes’ rule:

p(Y, X) = p(X[Y)p(Y). M

P(Y) is a prior distribution and P(X|Y) is a likelihood
function that governs how the feature X is generated given

a state Y. In Generative models, an essential question that
needs to be answered is how to decompose P(X|Y) into
factor representations. Typically, this requires assumptions of
independence of the features (such as naive Bayes) or structual
learning to find the best decomposition.

CRF models, on the other hand, do not use this decompos-
tion but directly compute the conditional probability p(Y | X).
As HMMs can be considered as an extension of Naive Bayes
for sequential data, so CRF models can be considered as an
extension of logistic regression. More detailed comparison of
generative and discriminative approaches can be found in [17].

When the data sequence is restricted to just one item (7" =
1), logistic regression can be used to compute the conditional
probability P(y|x;) as follows':

1 K
p(yr =ilx1) = meﬂﬁp(z Oik1r) 2)
k=1

where Z(X) = Zﬁll exp(ZkK=1 0;1z1k) and is a normal-
ization constant (we ignore a state bias 6;).

The simplest form of CRFs for sequential data are linear-
chain CRFs, which only assume conditional probability be-
tween adjacent items. Thus, Equation 2 is rewritten as follows:

1

K
m%p(; Oijkrer) (3)

p(ye = ilye—1 = j. x¢)
and taking the product of such terms, over the sequence, to
form P(Y|X).

In linear-chain CRFs, the dimensionality of parameter 6 is
M = |S|? x K. However, not all 6;;; need to be learned
from the training data D = {X™) Y™ }N_  because some
combinations of y;_1,y; and x; never occur. Parameter esti-
mation for linear-chain CRFs is usually done by maximising
log likelihood function [(f) = log P(Y|X); typically using
numerical optimisation such as gradient ascent or Newton’s
method.

IV. ADDRESS PARSER

We are presenting an address parser using a linear-chain
CRF model described above to semantically annotate ad-
dresses that come from databases or the Web. The task of
semantic annotation of an address is different from other
natural language applications because the texts are less regular
in an address. In real world applications, addresses often have
imperfect field alignment and noisy data values. For example,
information about “country” could be missing for an address
in a Web or a “city” column from a database might store data
other than values of “city”. Our goal is to parse these addresses
into corresponding fields so that a better data quality can be
maintained.

'We assume variable x1;, is a binary variable.
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TABLE II
A SAMPLE OF REFERENCE DATA FOR GB ADDRESSES.

Lookup Tables ‘ Sample Words

PostDistrict | London, West Bromwich
| London, West Midlands

West, South

County

Geolocation Qualifier |

A. Extraction of Features

One of the advantages of using CRFs is its expressiveness of
features, allowing rich and overlapping features to be extracted
from the raw data. For instance, as shown in Table 1I, word
“London” can be found in both GB’s post district and county
tables, features for token “London” are “GB_pdis_nm” and
“GB_cnty_nm”, saying “London” can be found in both post
district and county reference tables.

We also explicitly distinguish data in the reference tables
with more than one word so that X_part feature could be
generated to represent that the current token can be found
in a token sequence of reference table “X”. As you can
see from Table II, token “West” is not only part of a post
district and a county but also a complete geolocation qual-
ifier. Automatically generated features for the token “West”
would be “GB_pdis_nm_part”, “GB_cnty_nm_part” and “Geo
_qualifier”.

The addresses we intend to parse could be incomplete
(missing data), inaccurate (typographic error), or even have
redundant information (repetitions). Take the following ad-
dress for example: “Flat 2 Monet Court Monet Court 2
Stubbs Drive London SE16 3EG UK”. Premises name “Monet
Court” appears twice in a row and the second appearance
is considered as “junk”. With our CRFs address parses,
it is desirable to annotate ‘“junk” label for such redundant
information. Thus, we add a feature function that can look
at previous tokens in order to determine if the current token
is a repetition. Therefore, tokens “Monet” and “Court” in the
second appearance will be assigned a feature “repetition”.

B. Semi-Structured Data

The addresses we considered in this work are not always
unstructured, but could have semi-structure. Kopcke and Rahm
[2] reviewed numerous studies of record linkage which mainly
focused on structured and often relational data, while semi-
structured and unstructured data received much less attention.
Note that the difference between fully structured and semi-
structured data is not strictly determined and can differ across
domains and data representation. We focus on relational struc-
tured and semi-structured data as defined below, following the
definitions in which are defined in [18].

Structured data: Fully structured data is considered to be
relational data where each field has a designated meaning.
For example, if a field is designated for the house number of
the address, then the corresponding field in each record should
only contain this part of the address.

Semi-structured data: Semi-structured data is data that has
some degree of flexibility, such as imperfect field alignment
where the data might appear in any of a number of fields
which is not necessarily designated to these data values or
where these field values could be furthered parsed into a set
of elementary attributes. For example, the whole address may
be stored textually in a single field or may be assigned to
multiple fields without any particular designation of purpose;
so that, the postal town coupled with post code may appear
as a single filed.

For instance, a semi-structured company address from the
web looks as follows:

<br> "1600 Amphiteatre ParkWay"
<br> "Mountain View, CA 94043"
<br> "USA"

There is already a br tag between token “Parkway” and
“Mountain”, which indicates it is unlikely for “Parkway” and
“Mountain” to be in the same semantic category after parsing.
Similar semi-structure could be found in databases where
data is separated into columns. In order to leverage this data
structure, we generate a “field_separator” feature whenever
there is a boundary between field values.

C. Stochastic Regular Grammar

Our lexicon-based address parser relies on generating fea-
tures mainly from a set of reference tables. An important
feature could be missing for a token in an address for three
reasons:

(i) Missing reference data; for example where the locality
table (for small sub-districts, e.g. villages) is incomplete;
(i1) Peculiar entity references; such as “long acre” (a road in
London) that omits a street identifier;
Omitted identifiers in the data; such as “X Y” instead of
“X'Y industrial park”. With key words “industrial park”
missing, it is more likely for the CRF parser to assign
unknown state to the arbitrary tokens “X” and “Y”,
because tokens labelled as unknown in the training data
also often lack any useful features apart from whether
they are alphabetic or alphanumeric.

(iii)

In order to reduce the effect of missing features, we pro-
posed to directly learn a stochastic regular grammar (SRG)
from the lifted label sequences, where a sequence of the
same labels is lifted as a macro label. For example, an
address sequence {“Road Road Road”, “City City Postcode
Postcode™} will become {Road City Postcode} in the training
examples for learning the grammar. The learned grammar
serves the same purpose as the transition matrix in HMM,
but it is intended to capture the dependencies between labels
at the segment-level rather than at the token-level and is
more sensitive to the examples presented in the data. For
instance, given two state sequences { BC'BD, BC'}, transition
probability from B to D learned in HMM is 1/3, so a new
sequence {BD} will have 1/3 probability being accepted,
while the stochastic regular grammar described later will reject
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Lifted Labels (Y1)

Unknown =—————————  Sub-Postdistrict = Postdistrict

P(Y1]|T)=0.1

—— — Rank1
Labels (Y1)  Unknown¥ Unknown¥ Sub-Postdistrict »Sub-Postdistrict# Postdistrict P(Y1]X)=0.3
Lifted Labels (Y2) Road-Name ———— Sub-Postdistrict—— Postdistrict P(Y2|T)=0.3
‘_I_\ 1 Rank2
Labels (Y2) Road-Name#®Road-Name?® Sub-Postdistrict® Sub-Postdistrict * Postdistrict P(Y2]|X)=0.2
Features: #Alphabet #Alphabet #Sub-Postdistrict #Sub-Postdistrict #Postdistrict
Tokens(X): Stubbs— Drive —&» New = Cross ~—>» London

Fig. 1. Two best output sequences Y1 and Y2 from the CRF parser and their conditional probabilities P(Y|X'). The Corresponding lifted label sequences

are Y1 and Y2 with probability P(Y|T).

the sequence {BD} because there is no transition from an
initial B to a D in the examples.

Let A be a finite alphabet which contains all semantic labels
for addresses. An address language L contains all possible
lifted label sequences of the address. The learned regular
grammar is a minimal stochastic finite automata (SFA), which
not only can decide whether a sequence of labels can be
accepted by L, but also can assign a probability distribution to
the sequences in the language L. The learning can be done by
firstly creating a prefix tree acceptor from a set of examples
and then merging similar states using an algorithm called
ALEGRIA [19]. The algorithm can identify the canonical
acceptor of a language with polynomial complexity in the size
of the training data.

The minimal SFA is used to re-rank the outputs of the
linear-chained CRFs. Given the K-top candidate sequences
Yiicl,..., K, generated from the CRF address parser, each
candidate sequences Y has its own conditional probability
P(Y'?|X). The best sequence that combines CRF and SFA is
selected as the one that maximises the joint probability:

Y* = argmax P(Y"|X) * score(Y*|T) 4
Yl

where 7' is the minimal SFA that is learned from the
examples and the score is computed as follows:

P(Yi|T)

score(YT) = — ‘ -
YA+ Y = [Y7])

&)

Y is the lifted label sequence, P(Y#|T) is the acceptance
probability given the learned grammar 7'. The length |Y7|
is used so that average transition probability is computed.
Variable |Y?|—|Y'| is added to penalise the difference between

actual sequence length |Y?| and lifted sequence length D}’\ In
an extreme situation, if every token in an address is assigned
the same label in an output Y, there is going to be only one

lifted label left after lifting (|Y'| = 1), which would have a
P(Y|T)
= A 7] .
score(Y'|T) gives a large score to a sequence with larger
average transition probabilities and more distinct labels.

rather large average score . In summary, the function

Figure 1 shows an example that combines the CRF con-
ditional probability and score function to reorder the output
sequences. The best two sequences for the address “Stubbs
Drive New Cross London” are Y1 and Y2. Because both
token “Stubbs” and “Drive” do not possess any informative
features apart from “Alphabet”, the best sequence Y1 of the
CRF parser is “Unknown, Unknown, Sub-Postdistrict, Sub-
Postdistrict and Postdistrict” with conditional probability
P(Y1|X) = 0.3. The lifted sequence Y1, in this case,
is “Unknown, Sub-Postdistrict and Postdistrict” with length
[Y1| = 3 and |Y1| — [Y1]| = 2. The score(Y1|T) computed
by Equation (5) is 0.1/(3 # (1 +2)) = 0.01 and the score of
Y2 is 0.3/(3 % (14 2)) = 0.03. Thus, the best sequence is
therefore Y2 using Equation (4).

As we mentioned before, the learned regular grammar is
sensitive to the examples presented in the data. If only label
sequences in the training data are used to learn the grammar,
a large number of test sequences will be rejected. Thus, the
examples we used to learn the grammar come from two
sources. One is training data where each label sequence has
a probability 1 because we are sure the appearance of the
sequence in the address language L. The other source is k-
top state sequences from the CRF parser associated with their
conditional probability P(Y|X). For example, Y1 and Y2 in
Figure 1 are both presented as the examples for learning the



grammar with probability 0.3 and 0.2 respectively.

V. EXPERIMENTS

In this section, we compared our CRF address parser to a
HMM address parser [4] and a semi-Markov CRF address
parser [10] which allows each label to persist for a non-
unit length of time. In the linear-chain CRF, multiple features
can be extracted for a token, while there is only one feature
for each token in HMM. As for the semi-Markov CRFs, the
features are extracted on the segment-level, that is, all previ-
ously mentioned token-level features are combined with the
indicators for the begin, the middle and the end of a segment.
The inference of semi-Markov CRFs is more expensive than
conventional linear-chained CRFs because it has to search over
all possible segmentations. Two real world datasets were tested
in the experiment. One is a postal dataset 2, which contains
GB addresses randomly generated from Google. The other is
a company dataset which contains GB company addresses.

Postal Dataset

The addresses in this dataset have much less noise and
imperfect field alignment. For example, most of the abbre-
viations, such as “st” or “rd”, have already been standardised
and the token “UK” always appears in the last field of an
address. Another thing worth noting here is that the addresses
in this dataset do not have information below house level, such
as floor number, or a flat indicator. When field separators are
not considered, semi-structured data are concatenated across
all fields to form a single string. As you can see from Table
III, the CRF and semi-Markov CRF address parsers have
better token-wise accuracies than the HMM parser when the
field separator is not taken into account, because they can
deal better with the overlapping features. The performance of
all three models improve with the introduction of the field
separator, which demonstrated a general advantage of making
use of the semi-structure of the data. Linear-chained models,
such as HMM and CREF, also benefit from the additional SFA
that learns segment-level dependency. As we discusses before,
the semi-Markov CRF does not perform well because there
is no sufficient segment-level features to support the global
dependency in the model and the overlapping in entity values
and features make the inference of semi-Markov CRF more
difficult.

The performance of the parsers on individual labels is shown
in Table V. In this experiment, we use the F) score as our
evaluation criterion, which takes both precision and recall into
account and is computed as follows:

precision X recall
X —
precision + recall

where precision = % and recall = TPT_‘_%. TP, FP, and
FN stands for the number of true positives, false positives and

false negatives receptively. The CRF has a higher (or equal)

=2 (6)

2Addresses are generated from the website: https://www.doogal.co.uk/
RandomAddresses.php. Labelled data is publicly available at https://www.
dropbox.com/sh/zaogpucOgawxpvx/AABHbikbe49ON2xPdEf7kwo7a?d1=0

TABLE III
PERFORMANCE OF CRFS AND HMM ADDRESS PARSER ON THE POSTAL
DATASET.
Methods Token-Wise Accuracy
HMM 91.8%
Semi-Markov CRF 93.0%
CRF 95.6%
HMM-+FieldSeparator 93.1%
Semi-Markov CRF+FieldSeparator 93.7%
CRF+FieldSeparator 97.2%
HMM-+FieldSeparator+SFA 94.4%
CRF+FieldSeparator+SFA 97.7%

TABLE IV
COMPARISON RESULTS OF CRFS AND HMM ADDRESS PARSER ON THE
COMPANY DATASET.

Methods Token-Wise Accuracy
HMM 85.7%
Semi-Markov CRF 87.8%
CRF 90.9%
HMM-+FieldSeparator 93.8%
Semi-Markov CRF+FieldSeparator 88.7%
CRF+FieldSeparator 95.9%
HMM-+FieldSeparatar+SFA 93.7%
CRF+FieldSeparator+SFA 96.2%

F score for most of the labels than the HMM and the semi-
Markov CRFE.

Company Dataset

There are 433 records of GB companies in this dataset,
which were randomly selected from a private company’s
database 3. Since both company names and addresses appear
in the database, we also included a state label “CO” to
represent company names. The database has one column to
store the company name and six columns to store the address.
Compared to the postal dataset, the imperfect field alignment
problem is much more severe and data values are much
more noisy, such as abbreviations, misspellings and missing
values. We assigned label “JK” to tokens that are clearly
redundant and use label “UN” for tokens that cannot be
decided by our domain experts. Another thing worth pointing
out here is company addresses in this dataset have much richer
information below road level, such as “X industrial park” or
“X department in a building”. The goal of our address parser
is to assign a semantic label to each token of an address so
that data belonging to the same semantic field can be placed
in the same column. In addition, data labelled as “junk” can
be cleaned up so that a better data quality can be maintained.
Both the training data and test data are manually labelled by
domain experts. There are 200 addresses in the training data
and 233 addresses in the test data.

Table IV compares the performance between different ad-
dress parsers for the company dataset. When the boundary of

3Because of the company’s policy, the dataset is not publicly available.


valeriia.haberland
Typewritten Text


TABLE V
PRECISION, RECALL AND F1-SCORE OF INDIVIDUAL LABELS FOR THE POSTAL DATASET.

Label CRFs + SFA HMMs Semi-Markov CRFs
Precision  Recall ~ F1 Score \ Precision  Recall  F1 Score \ Precision  Recall ~ F1 Score
House Number(HN) | 1 1 1 | 1 1 1 | 1 1 1
Road (RD) \ 1 0.92 0.96 \ 0.94 0.92 0.93 \ 0.88 0.97 0.92
Sub District (SD) | 1 1 1 | 1 1 1 | 0.80 0.80 0.80
Post District (PD) | 0.94 0.94 0.94 | 1 0.94 0.97 | 0.94 0.94 0.94
County (CN) \ 0.96 0.92 0.94 \ 1 0.64 0.78 \ 0.91 0.8 0.85
PostCode (PC) | 1 1 1 | 1 1 1 | 0.97 1 0.99
Country (CY) | 1 1 1 | 1 1 1 | 1 1 1
Junk (JK) | 0.5 1 0.67 | 0.09 1 0.17 | 0 0
Average [ 0.98 0.96 0.97 [ 0.98 0.95 0.95 [ 0.93 0.94 0.93
TABLE VI

PRECISION, RECALL AND F1-SCORE OF INDIVIDUAL LABELS FOR THE COMPANY DATASET.

Label CRFs + SFA HMMs Semi-Markov CRFs
Precision  Recall ~ F1 Score ‘ Precision  Recall ~ F1 Score ‘ Precision  Recall ~ F1 Score

Company (CO) | 0.97 0.99 0.98 | 0.99 0.99 0.99 | 0.73 0.83 0.77
Post box (PB) \ 0.67 1 0.80 ‘ 1 1 1 ‘ 1 1 1
Postbox number (PN) | 0.5 1 0.67 | 1 1 1 | 1 1 1
Sub Building (SB) \ 1 0.35 0.52 \ 1 0.53 0.70 \ 1 0.47 0.64
SubBuilding (SN) 0.86 0.86 0.86 0.56 0.71 0.61 0.86 0.86 0.86
Number
Building (BU) \ 0.81 0.96 0.88 \ 0.86 0.81 0.83 \ 0.73 0.83 0.78
House Number (HN) | 0.97 0.96 0.97 | 0.91 0.96 0.93 | 0.94 0.96 0.95
Sub Road(SR) ‘ 0.94 0.90 0.92 \ 091 0.76 0.83 \ 0.88 0.84 0.86
Road (RD) | 0.98 0.95 0.97 | 0.75 0.89 0.81 | 0.93 0.89 0.91
Sub District(SD) | 0.82 0.85 0.84 | 0.70 0.70 0.70 | 0.67 0.51 0.58
Post District (PD) \ 0.92 0.98 0.95 \ 0.85 0.99 0.91 \ 0.71 0.91 0.80
County (CN) | 0.98 1 0.99 | 0.97 1 0.98 | 0.84 0.74 0.79
PostCode (PC) \ 1 0.98 0.99 \ 0.99 0.97 0.98 \ 0.99 0.93 0.96
Country (CY) | 1 1 1 | 0.92 1 0.96 | 0.83 0.76 0.79
Special (SP) | 1 0.5 0.67 | 0.8 1 0.89 | 0.2 0.13 0.15
Junk (JK) \ 0.75 0.2 0.28 \ 0.29 0.06 0.10 \ 0 0
Unknown (UN) | 02 0.1 0.15 | 0 0 | 0.16 0.21 0.19
Average [ 0.94 0.94 0.94 [ 0.89 0.90 0.90 [ 0.81 0.83 0.82

field values is not considered, the CRF achieved 90.9% accu-
racy, which is better than two baselines. Additional boundary
features improve the performance of both CRF and HMM to
95.9% and 93.8% respectively, while the accuracy of semi-
Markov CRFs is only 88.7%. Finally, the linear-chain CRF,
coupled with the field separator and the learned grammar,
achieved the best performance with 96.2% accuracy.

The performance for individual labels with this dataset is
shown in Table VI. The CRF has higher F) scores in the
majority of cases, in particular with values that are overlap-
ping, e.g. sub road, road, post district and so on. As you

can see from Table VI, the CRF, as compared to HMM, was
also able to generate much more correct “Junk” labels for the
redundant data because of the proposed repetition features.
HMM predicts 100% correctly on the label PB because the
corresponding feature has no overlapping with any other.

VI. CONCLUSION AND FUTURE WORK

We presented a lexicon-based probabilistic address parser
based on conditional random fields that can automatically
annotate semi-structured addresses. Boundaries between fields
are taken into account to leverage the semi-structure of the
data. In addition, a stochastic grammar learned from the



lifted labels is used to capture the segment-level dependencies.
Experiments on two real-world datasets demonstrated a better
annotation ability of the linear-chained CRF coupled with
the learned SFA compared to the baselines. One thing worth
noting here is that leveraging the semi-structure of the data
and the learned SFA are two general enhancement techniques
that can be applied to improve any linear-chained models.

Human labelling is time consuming when generating both
training and test data, we would like to extend our CRF models
in a semi-supervised setting. Generative models, such as
Bayesian networks or HMMs, have natural ways of handling
unlabelled data in the training data. For example, standard
Baum-Welch algorithm can be applied with HMMs for learn-
ing parameters from partially labelled data. However, it is not
straight-forward to apply CRFs for semi-supervised learning
as discussed in [20], [21].

Another direction of our future work is making use of
external sources for data cleaning and validation [22]. There
might be more than one postcode appearing in an address, e.g.
a company’s current postcode and previous postcode are both
appearing in the record. Without referring to external sources,
it is extremely difficult for the current address parser to decide
which postcode is more likely to be correct.
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