Document Details


2402.01306.pdf
Download View Text Delete
Clip: KTO: Model Alignment as Prospect Theoretic Optimization Kawin Ethayarajh 1 Winnie Xu 2 Niklas Muennighoff 2 Dan Jurafsky 1 Douwe Kiela 1 2 Abstract Kahneman & Tversky’sprospect theorytells us that humans perceive random variables in a biased but well-defined manner (1992); for example, hu-
Filename: 2402.01306.pdf
Filetype: application/pdf
Size: 1055023 bytes
Uploaded On: 2024-03-19
Abstract:
Summary:
Tags:
Notes:
Visible: 1
Status: Parsed
Author: Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, Douwe Kiela
CreationDate: 2024-02-05T01:46:03+00:00
Creator: LaTeX with hyperref
Keywords: Machine Learning, ICML
ModDate: 2024-02-05T01:46:03+00:00
PTEX.Fullbanner: This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) kpathsea version 6.3.5
Producer: pdfTeX-1.40.25
Subject: Proceedings of the International Conference on Machine Learning 2024
Title: KTO: Model Alignment as Prospect Theoretic Optimization
Trapped: False
Pages: 18

Return to Document Library